Skip to main content
Log in

First-Principles Study of the Structures and Electronic Properties for NinGe (n = 19–29) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Using the density functional theory calculations with the PBE exchange–correlation energy functional, we have studied the magnetic property and electronic properties such as binding energy, embedding energy, charge transfer, ionization potential and electron affinity of the NinGe (n = 19–29) neutral and ionic clusters. The addition of Ge atom can decrease the magnetic moments of Nin clusters except Ni28 and Ni +/−28 . The charge is transferred from Ge atom to Ni clusters. And the local maxima value has appeared at Ni25Ge cluster. Both the calculated ionization potential and electron affinity exhibit an oscillating behavior as the cluster size increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. J. Feng and L. L. Cai (2014). Comput. Theor. Chem. 1042, 57.

    Article  CAS  Google Scholar 

  2. K. Dhaka, R. Trivedi, and D. Bandyopadhyay (2013). J. Mol. Model. 19, 1473.

    Article  CAS  PubMed  Google Scholar 

  3. Z. W. Ma and B. X. Li (2015). Comput. Theor. Chem. 1068, 88.

    Article  CAS  Google Scholar 

  4. T. Mohri (2015). J. Mater. Sci. 50, 7705.

    Article  CAS  Google Scholar 

  5. J. Teeriniemi, J. Huisman, P. Taskinen, and K. Laasonen (2015). J. Alloys Compd. 652, 371.

    Article  CAS  Google Scholar 

  6. J. X. Zhu, P. Cheng, N. Wang, and S. P. Huang (2015). Comput. Theor. Chem. 1071, 9.

    Article  CAS  Google Scholar 

  7. N. S. Venkataramanan, R. Sahara, H. Mizuseki, and Y. Kawazoe (2010). J. Phys. Chem. A 114, 5049.

    Article  CAS  PubMed  Google Scholar 

  8. J. A. Mary, A. Manikandan, L. J. Kennedy, M. Bououdina, R. Sundaram, and J. J. Vijaya (2014). Trans. Nonferrous Met. Soc. 24, 1467.

    Article  CAS  Google Scholar 

  9. B. R. Wang, H. Y. Han, and Z. Xie (2014). J. Mol. Struct. 1062, 174.

    Article  CAS  Google Scholar 

  10. C. M. Tang, M. Y. Liu, W. H. Zhu, and K. M. Deng (2011). Comput. Theor. Chem. 969, 56.

    Article  CAS  Google Scholar 

  11. N. Kapila, V. K. Jindal, and H. Sharma (2011). Physica B 406, 4612.

    Article  CAS  Google Scholar 

  12. A. Chikhaoui, K. Haddab, S. Bouarab, and A. Vega (2011). J. Phys. Chem. A 115, 13997.

    Article  CAS  PubMed  Google Scholar 

  13. X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2016). Chin. J. Chem. Phys. 29, 123.

    Article  CAS  Google Scholar 

  14. J. M. Goicoechea and J. E. McGrady (2015). Dalton Trans. 44, 6755.

    Article  CAS  PubMed  Google Scholar 

  15. Z. El-Bayyari (2005). J. Mol. Struct. (Theochem) 716, 165.

    Article  CAS  Google Scholar 

  16. Z. Xie, Q. M. Ma, Y. Liu, and Y. C. Li (2005). Phys. Lett. A 342, 459.

    Article  CAS  Google Scholar 

  17. W. Song, W. C. Lu, Q. J. Zang, C. Z. Wang, and K. M. Ho (2012). Int. J. Quantum Chem. 112, 1717.

    Article  CAS  Google Scholar 

  18. W. Song, W. C. Lu, C. Z. Wang, and K. M. Ho (2011). Comput. Theor. Chem. 978, 41.

    Article  CAS  Google Scholar 

  19. G. Kresse and J. Hafner (1993). Phys. Rev. B 47, 558.

    Article  CAS  Google Scholar 

  20. G. Kresse and J. Furthmuller (1996). Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  21. M. B. Abreu, A. C. Reber, and S. N. Khanna (2014). J. Phys. Chem. Lett. 5, 3492.

    Article  CAS  PubMed  Google Scholar 

  22. D. Bandyopadhyay and P. Sen (2010). J. Phys. Chem. A 114, 1835.

    Article  CAS  PubMed  Google Scholar 

  23. S. N. Khanna, B. Rao, and P. Jena (2002). Phys. Rev. Lett. 89, 016803.

    Article  CAS  PubMed  Google Scholar 

  24. D. Bandyopadhyay, P. Kaur, and P. Sen (2010). J. Phys. Chem. A 114, 12986.

    Article  CAS  PubMed  Google Scholar 

  25. R. Trivedi, K. Dhaka, and D. Bandyopadhyay (2014). RSC Adv. 4, 64825.

    Article  CAS  Google Scholar 

  26. D. Bandyopadhyay (2008). J. Appl. Phys. 104, 084308.

    Article  CAS  Google Scholar 

  27. M. Kumar, N. Bhattacharyya, and D. Bandyopadhyay (2012). J. Mol. Model. 18, 405.

    Article  CAS  PubMed  Google Scholar 

  28. J. T. Lau, A. Föhlisch, M. Martins, R. Nietubyc, M. Reif, and W. Wurth (2002). New J. Phys. 4, 98.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of He’nan Department of Education (Grant Nos.: 15B150010; 18B430012 and 15A140032). This work is also supported by Xinxiang University Doctor Initial Research Program (Grant Nos.: 1366020018 and 1366020039) and Science and Technology Innovation Fund of Xinxiang University (Grant Nos.: 15ZP01 and 15ZB25). The computational resource is partly supported by the Performance Computing Center of Jilin University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Yuan Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Fu, Z., Liu, Th. et al. First-Principles Study of the Structures and Electronic Properties for NinGe (n = 19–29) Clusters. J Clust Sci 30, 131–139 (2019). https://doi.org/10.1007/s10876-018-1462-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1462-7

Keywords

Navigation