Journal of Cluster Science

, Volume 29, Issue 3, pp 417–423 | Cite as

Assembly of a Two-Fold Interpenetrated Three-Dimensional Metal–Organic Framework by Using the Template Function of Keggin Anions

  • Shi Zhou
  • Ya-Guang Chen
  • Bo Liu
  • Yan-Hong Xu
  • Xiu-Yan Wang
Original Paper


A metal–organic framework [Co2(btp)3(GeMo12O40)] (1) (btp = 1,3-bis-(1,2,4-triazol-1-yl)propane) has been constructed by using the template function of the Keggin anions GeMo12O404−. Single-crystal X-ray analysis reveals that the structure exhibits two-fold interpenetrated 3D host metal–organic framework constructed from cobalt(II) and btp linkers and the voids of which are occupied by Keggin anions. The optical band gap of 1 indicates that it is potential wide-gap semiconductive material. The photocatalytic activity of compound 1 in degradation of MB under visible light and UV light irradiation are also investigated.


Polyoxometalates Interpenetration Metal–organic framework POM template Crystal structure Photocatalysis 



This work was supported by the Science and technology development plan of Jilin province (20150520006JH), Science and technology research project of Education Department of Jilin province (2016219), Natural Science Foundation of China (21501065, 21676115, 21607051, 51404108) and Science and technology development plan of Siping city (2013055).

Supplementary material

10876_2018_1347_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1609 kb)


  1. 1.
    H. Wu, J. Yang, Z. M. Su, S. R. Batten, and J. F. Ma (2011). J. Am. Chem. Soc. 133, 11406.CrossRefGoogle Scholar
  2. 2.
    B. Moulton and M. J. Zaworotko (2011). Chem. Rev. 101, 1629.CrossRefGoogle Scholar
  3. 3.
    L. Carlucci, G. Ciani, and D. M. Proserpio (2003). Coord. Chem. Rev. 246, 247.CrossRefGoogle Scholar
  4. 4.
    S. R. Batten (2001). CrystEngComm. 3, 67.CrossRefGoogle Scholar
  5. 5.
    S. R. Batten and R. Robson (1998). Angew. Chem. Int. Ed. 37, 1460.CrossRefGoogle Scholar
  6. 6.
    J. Long and O. Yaghi (2009). Chem. Soc. Rev. 38, 1213.CrossRefGoogle Scholar
  7. 7.
    A. K. Cheetham, G. Férey, and T. Loiseau (1999). Angew. Chem. Int. Ed. 38, 3268.CrossRefGoogle Scholar
  8. 8.
    P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.CrossRefGoogle Scholar
  9. 9.
    A. Müller, S. Q. N. Shah, H. Bçgge, and M. Schmidtmann (1999). Nature. 397, 48.CrossRefGoogle Scholar
  10. 10.
    P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 3625.CrossRefGoogle Scholar
  11. 11.
    A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun., 1837.Google Scholar
  12. 12.
    D. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. 122, 1780.CrossRefGoogle Scholar
  13. 13.
    D. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.CrossRefGoogle Scholar
  14. 14.
    Z. M. Zhang, S. Yao, Y. G. Li, X. B. Han, Z. M. Su, Z. S. Wang, and E. B. Wang (2012). Chem. Eur. J. 18, 9184.CrossRefGoogle Scholar
  15. 15.
    L. Xu, M. Lu, B. B. Xu, Y. G. Wei, Z. H. Peng, and D. R. Powell (2002). Angew. Chem. 114, 4303.CrossRefGoogle Scholar
  16. 16.
    L. Xu, M. Lu, B. B. Xu, Y. G. Wei, Z. H. Peng, and D. R. Powell (2002). Angew. Chem. Int. Ed. 41, 4129.CrossRefGoogle Scholar
  17. 17.
    J. W. Han and C. H. Hill (2007). J. Am. Chem. Soc. 129, 15094.CrossRefGoogle Scholar
  18. 18.
    R. Cao, J. W. Han, T. M. Anderson, D. A. Hillesheim, M. L. Kirk, D. G. Musaev, K. Morokuma, Y. V. Geletii, and C. H. Hill (2008). Adv. Inorg. Chem. 60, 245.CrossRefGoogle Scholar
  19. 19.
    J. L. C. Rowsell and O. M. Yaghi (2005). Angew. Chem. Int. Ed. 44, 4670.CrossRefGoogle Scholar
  20. 20.
    J. Araki and K. Ito (2007). Soft Matter. 3, 1456.CrossRefGoogle Scholar
  21. 21.
    X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, and L. S. Zheng (2006). Inorg. Chem. 45, 10702.CrossRefGoogle Scholar
  22. 22.
    X. L. Wang, C. Qin, E. B. Wang, and Z. M. Su (2007). Chem. Commun., 4245.Google Scholar
  23. 23.
    L. L. Fan, D. R. Xiao, E. B. Wang, Y. G. Li, Z. M. Su, X. L. Wang, and J. Liu (2007). Cryst. Growth Des. 7, 592.CrossRefGoogle Scholar
  24. 24.
    S. T. Zheng and G. Y. Yang (2010). Dalton Trans. 39, 700.CrossRefGoogle Scholar
  25. 25.
    S. Zhou, Z. G. Kong, Q. W. Wang, and C. B. Li (2012). Inorg. Chem. Commun. 20, 131.CrossRefGoogle Scholar
  26. 26.
    C. Pettinari, A. Tăbăcaru, and S. Galli (2016). Coord. Chem. Rev. 307, 1.CrossRefGoogle Scholar
  27. 27.
    E. Y. Semitut, T. S. Sukhikh, E. Y. Filatov, G. A. Anosova, A. A. Ryadun, K. A. Kovalenko, and A. S. Potapov (2017). Cryst. Growth Des. 17, 5559.CrossRefGoogle Scholar
  28. 28.
    G. M. Sheldrick SHELXS-97, Program for Solution of Crystal Structures (University of Göttingen, Gottingen, 1997).Google Scholar
  29. 29.
    D. W. Wang, Q. H. Wang, and T. M. Wang (2001). Inorg. Chem. 50, 6482.CrossRefGoogle Scholar
  30. 30.
    S. Zhou, B. Liu, X. M. Li, T. Shi, and Y. G. Chen (2014). J. Solid State Chem. 219, 15.CrossRefGoogle Scholar
  31. 31.
    Z. Xiao, Y. Zhu, Y. Wei, and Y. Wang (2006). Inorg. Chem. Commun. 9, 400.CrossRefGoogle Scholar
  32. 32.
    L. Zhang, Y. Wei, C. Wang, H. Guo, and P. Wang (2004). J. Solid State Chem. 177, 3433.CrossRefGoogle Scholar
  33. 33.
    J. I. Pankove Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, 1971).Google Scholar
  34. 34.
    W. M. Wesley and W. G. H. Harry Reflectance Spectroscopy (Wiley, New York, 1966).Google Scholar
  35. 35.
    A. Fujishima and K. Honda (1972). Nature. 238, 37.CrossRefGoogle Scholar
  36. 36.
    P. Wang, Y. Yuan, Z. B. Han, and G. Y. Zhu (2001). J. Mater. Chem. 11, 549.CrossRefGoogle Scholar
  37. 37.
    A. Hiskia, A. Mylonas, and E. Papaconstantinou (2001). Chem. Soc. Rev. 30, 62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shi Zhou
    • 1
    • 2
  • Ya-Guang Chen
    • 3
  • Bo Liu
    • 1
    • 2
  • Yan-Hong Xu
    • 1
    • 2
  • Xiu-Yan Wang
    • 1
    • 2
  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)Ministry of EducationChangchunPeople’s Republic of China
  2. 2.Department of ChemistryJilin Normal UniversitySipingPeople’s Republic of China
  3. 3.Key Laboratory of Polyoxometalates Science of Ministry of Education, Faculty of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations