Skip to main content
Log in

Assembly of a Two-Fold Interpenetrated Three-Dimensional Metal–Organic Framework by Using the Template Function of Keggin Anions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A metal–organic framework [Co2(btp)3(GeMo12O40)] (1) (btp = 1,3-bis-(1,2,4-triazol-1-yl)propane) has been constructed by using the template function of the Keggin anions GeMo12O404−. Single-crystal X-ray analysis reveals that the structure exhibits two-fold interpenetrated 3D host metal–organic framework constructed from cobalt(II) and btp linkers and the voids of which are occupied by Keggin anions. The optical band gap of 1 indicates that it is potential wide-gap semiconductive material. The photocatalytic activity of compound 1 in degradation of MB under visible light and UV light irradiation are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Wu, J. Yang, Z. M. Su, S. R. Batten, and J. F. Ma (2011). J. Am. Chem. Soc. 133, 11406.

    Article  CAS  Google Scholar 

  2. B. Moulton and M. J. Zaworotko (2011). Chem. Rev. 101, 1629.

    Article  Google Scholar 

  3. L. Carlucci, G. Ciani, and D. M. Proserpio (2003). Coord. Chem. Rev. 246, 247.

    Article  CAS  Google Scholar 

  4. S. R. Batten (2001). CrystEngComm. 3, 67.

    Article  Google Scholar 

  5. S. R. Batten and R. Robson (1998). Angew. Chem. Int. Ed. 37, 1460.

    Article  Google Scholar 

  6. J. Long and O. Yaghi (2009). Chem. Soc. Rev. 38, 1213.

    Article  CAS  Google Scholar 

  7. A. K. Cheetham, G. Férey, and T. Loiseau (1999). Angew. Chem. Int. Ed. 38, 3268.

    Article  CAS  Google Scholar 

  8. P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.

    Article  CAS  Google Scholar 

  9. A. Müller, S. Q. N. Shah, H. Bçgge, and M. Schmidtmann (1999). Nature. 397, 48.

    Article  Google Scholar 

  10. P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 3625.

    Article  CAS  Google Scholar 

  11. A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun., 1837.

  12. D. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. 122, 1780.

    Article  Google Scholar 

  13. D. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736.

    Article  CAS  Google Scholar 

  14. Z. M. Zhang, S. Yao, Y. G. Li, X. B. Han, Z. M. Su, Z. S. Wang, and E. B. Wang (2012). Chem. Eur. J. 18, 9184.

    Article  CAS  Google Scholar 

  15. L. Xu, M. Lu, B. B. Xu, Y. G. Wei, Z. H. Peng, and D. R. Powell (2002). Angew. Chem. 114, 4303.

    Article  Google Scholar 

  16. L. Xu, M. Lu, B. B. Xu, Y. G. Wei, Z. H. Peng, and D. R. Powell (2002). Angew. Chem. Int. Ed. 41, 4129.

    Article  CAS  Google Scholar 

  17. J. W. Han and C. H. Hill (2007). J. Am. Chem. Soc. 129, 15094.

    Article  CAS  Google Scholar 

  18. R. Cao, J. W. Han, T. M. Anderson, D. A. Hillesheim, M. L. Kirk, D. G. Musaev, K. Morokuma, Y. V. Geletii, and C. H. Hill (2008). Adv. Inorg. Chem. 60, 245.

    Article  CAS  Google Scholar 

  19. J. L. C. Rowsell and O. M. Yaghi (2005). Angew. Chem. Int. Ed. 44, 4670.

    Article  CAS  Google Scholar 

  20. J. Araki and K. Ito (2007). Soft Matter. 3, 1456.

    Article  CAS  Google Scholar 

  21. X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, and L. S. Zheng (2006). Inorg. Chem. 45, 10702.

    Article  CAS  Google Scholar 

  22. X. L. Wang, C. Qin, E. B. Wang, and Z. M. Su (2007). Chem. Commun., 4245.

  23. L. L. Fan, D. R. Xiao, E. B. Wang, Y. G. Li, Z. M. Su, X. L. Wang, and J. Liu (2007). Cryst. Growth Des. 7, 592.

    Article  CAS  Google Scholar 

  24. S. T. Zheng and G. Y. Yang (2010). Dalton Trans. 39, 700.

    Article  CAS  Google Scholar 

  25. S. Zhou, Z. G. Kong, Q. W. Wang, and C. B. Li (2012). Inorg. Chem. Commun. 20, 131.

    Article  Google Scholar 

  26. C. Pettinari, A. Tăbăcaru, and S. Galli (2016). Coord. Chem. Rev. 307, 1.

    Article  CAS  Google Scholar 

  27. E. Y. Semitut, T. S. Sukhikh, E. Y. Filatov, G. A. Anosova, A. A. Ryadun, K. A. Kovalenko, and A. S. Potapov (2017). Cryst. Growth Des. 17, 5559.

    Article  CAS  Google Scholar 

  28. G. M. Sheldrick SHELXS-97, Program for Solution of Crystal Structures (University of Göttingen, Gottingen, 1997).

    Google Scholar 

  29. D. W. Wang, Q. H. Wang, and T. M. Wang (2001). Inorg. Chem. 50, 6482.

    Article  Google Scholar 

  30. S. Zhou, B. Liu, X. M. Li, T. Shi, and Y. G. Chen (2014). J. Solid State Chem. 219, 15.

    Article  CAS  Google Scholar 

  31. Z. Xiao, Y. Zhu, Y. Wei, and Y. Wang (2006). Inorg. Chem. Commun. 9, 400.

    Article  CAS  Google Scholar 

  32. L. Zhang, Y. Wei, C. Wang, H. Guo, and P. Wang (2004). J. Solid State Chem. 177, 3433.

    Article  CAS  Google Scholar 

  33. J. I. Pankove Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, 1971).

    Google Scholar 

  34. W. M. Wesley and W. G. H. Harry Reflectance Spectroscopy (Wiley, New York, 1966).

    Google Scholar 

  35. A. Fujishima and K. Honda (1972). Nature. 238, 37.

    Article  CAS  Google Scholar 

  36. P. Wang, Y. Yuan, Z. B. Han, and G. Y. Zhu (2001). J. Mater. Chem. 11, 549.

    Article  CAS  Google Scholar 

  37. A. Hiskia, A. Mylonas, and E. Papaconstantinou (2001). Chem. Soc. Rev. 30, 62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and technology development plan of Jilin province (20150520006JH), Science and technology research project of Education Department of Jilin province (2016219), Natural Science Foundation of China (21501065, 21676115, 21607051, 51404108) and Science and technology development plan of Siping city (2013055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Guang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Chen, YG., Liu, B. et al. Assembly of a Two-Fold Interpenetrated Three-Dimensional Metal–Organic Framework by Using the Template Function of Keggin Anions. J Clust Sci 29, 417–423 (2018). https://doi.org/10.1007/s10876-018-1347-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1347-9

Keywords

Navigation