Skip to main content

Advertisement

Log in

Tuning the Spectrum Properties of Fullerene C60: Using a Strong External Electric Field

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The electric field can change the absorption of fullerene C60 to different wavelengths of light by affecting the vibrational modes and electronic transitions. The IR spectrum of fullerene C60 under the strong electric field is studied on B3LYP/6-31G* basis set using density function theory. With the external electric field decreasing, silent modes Hg(1), Ag(1), Gu(2), Hg(5), Ag(2), Hu(7) become active. Meanwhile, UV–Vis spectrum, the excitation energy, excitation wavelength and oscillator strength of first fourteen excited states of fullerene C60 under the field are also studied in B3LYP/6-31G* basis set using time-dependent density functional theory. With the electric field increasing, the absorption peak of fullerene C60 occurs then shifts towards the long-wave region. The excitation energy decrease and the excitation wavelength increase correspondingly, and external electric field makes fullerene C60 absorb energy from 1.01 to 2.31 eV in theory. The energy gap decreases drastically from 2.74 to 1.38 eV, which contributed to tune the energy gap of fullerene C60 by the effect of the electric field in a wide range. It is possible to use electric field to tune fullerene C60 into new energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. E. Smalley (1992). Acc. Chem. Res. 25, (3), 98–105.

    Article  CAS  Google Scholar 

  2. R. F. Bryan. ACS Symposium Series 481 edited by GS Hammond (1993), pp. 928–928.

  3. M. S. Golden, M. Knupfer, J. Fink, J. F. Armbruster, T. R. Cummins, H. A. Romberg, … & E. Sohmen (1995). J. Phys. Condens. Matter 7, (43), 8219.

  4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. C. Smalley (1985). Nature 318, 162–163.

    Article  CAS  Google Scholar 

  5. A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias (1993). Opt. Lett. 18, (5), 334–336.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Chabre, D. Djurado, M. Armand, W. R. Romanow, N. Coustel, J. P. McCauley Jr., and A. B. Smith III (1992). J. Am. Chem. Soc. 114, (2), 764–766.

    Article  CAS  Google Scholar 

  7. M. M. Ross, H. H. Nelson, J. H. Callahan, and S. W. McElvany (1992). J. Phys. Chem. 96, (13), 5231–5234.

    Article  CAS  Google Scholar 

  8. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, and K. Ohtani (2000). Nature 408, (6815), 944.

    Article  CAS  PubMed  Google Scholar 

  9. L. J. Bartolotti, D. Rai, A. D. Kulkarni, S. P. Gejji, and R. K. Pathak (2014). Comput. Theor. Chem. 1044, 66–73.

    Article  CAS  Google Scholar 

  10. A. V. Tuchin, L. A. Bityutskaya, and E. N. Bormontov (2015). Eur. Phys. J. D 69, (3), 87.

    Article  CAS  Google Scholar 

  11. M. T. Baei, A. S. Ghasemi, E. T. Lemeski, A. Soltani, and N. Gholami (2016). J. Clust. Sci. 27, (4), 1081–1096.

    Article  CAS  Google Scholar 

  12. H. Shi, D. X. Zhao, and Z. Z. Yang (2015). Mol. Phys. 113, (23), 3801–3808.

    Article  CAS  Google Scholar 

  13. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, and Q. Zhan (2008). Nat. Mater. 7, (6), 478.

    Article  CAS  PubMed  Google Scholar 

  14. S. Shaik, D. Mandal, and R. Ramanan (2016). Nat. Chem. 8, (12), 1091.

    Article  CAS  PubMed  Google Scholar 

  15. X. Xu, B. Liu, X. Wu, et al. (2018). Opt. Express 26, (20), 26576–26589.

    Article  PubMed  Google Scholar 

  16. F. Wudl (1992). Acc. Chem. Res. 25, (3), 157–161.

    Article  CAS  Google Scholar 

  17. C. Parlak, Ö. Alver, and P. Ramasami (2017). J. Clust. Sci. 28, (5), 2645–2652.

    Article  CAS  Google Scholar 

  18. V. Schettino, M. Pagliai, L. Ciabini, and G. Cardini (2001). J. Phys. Chem. A 105, (50), 11192–11196.

    Article  CAS  Google Scholar 

  19. M. J. Frisch, et al., GAUSSIAN-09, Revision C.01 (GAUSSIAN Inc., Wallingford, CT, 2010).

  20. A. Seif, E. Zahedi, and T. S. Ahmadi (2011). Eur. Phys. J. B 82, (2), 147–152.

    Article  CAS  Google Scholar 

  21. S. W. Tang, L. L. Sun, J. D. Feng, H. Sun, R. S. Wang, and Y. F. Chang (2009). Eur. Phys. J. D 53, (2), 197–204.

    Article  CAS  Google Scholar 

  22. M. Hesabi and M. Hesabi (2013). J. Nanostruct. Chem. 3, (1), 22.

    Article  Google Scholar 

  23. T. Lin, W. D. Zhang, J. Huang, and C. He (2005). J. Phys. Chem. B 109, (28), 13755–13760.

    Article  CAS  PubMed  Google Scholar 

  24. A. D. Becke (1993). J. Chem. Phys. 98, (7), 5648–5652.

    Article  CAS  Google Scholar 

  25. V. Schettino, M. Pagliai, and G. Cardini (2002). J. Phys. Chem. A 106, (9), 1815–1823.

    Article  CAS  Google Scholar 

  26. P. Kjellberg, Z. He, and T. Pullerits (2003). J. Phys. Chem. B 107, (49), 13737–13742.

    Article  CAS  Google Scholar 

  27. F. C. Grozema, R. Telesca, H. T. Jonkman, L. D. A. Siebbeles, and J. G. Snijders (2001). J. Chem. Phys. 115, (21), 10014–10021.

    Article  CAS  Google Scholar 

  28. J. Menéndez and J. B. Page. (Springer, Berlin, Heidelberg, 2000), 27–95.

  29. S. Sowlati-Hashjin and C. F. Matta (2013). J. Chem. Phys. 139, (14), 144101.

    Article  CAS  PubMed  Google Scholar 

  30. L. Huang, L. Massa, and C. F. Matta (2014). Carbon 76, 310–320.

    Article  CAS  Google Scholar 

  31. K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. De Vries (1991). Science 254, (5030), 410–412.

    Article  CAS  PubMed  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz Quantum Mechanics (Pergamon Press, New York, 1965).

    Google Scholar 

  33. D. Bauer and P. Mulser (1999). Phys. Rev. A 59, (1), 569.

    Article  CAS  Google Scholar 

  34. M. S. Baba, T. L. Narasimhan, R. Balasubramanian, and C. K. Mathews (1992). Int. J. Mass Spectrom. Ion Process. 114, (1–2), R1–R8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the (National Natural Science Foundation of China) under Grant (Nos. 91850114, 11564040, and 21763027); Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (No. 18KJA140002), Natural Science Foundation of JiangSu Province (No. BK20160958) and (‘Six Talent Peaks’ Project in Jiangsu Province) under Grant (No. 2015-JNHB-011). The authors are grateful to Prof. Aihua Liu from Jilin University for inspiration for this project and useful discussion on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, Y., Ma, X. et al. Tuning the Spectrum Properties of Fullerene C60: Using a Strong External Electric Field. J Clust Sci 30, 319–328 (2019). https://doi.org/10.1007/s10876-018-01486-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-01486-4

Keywords

Navigation