Skip to main content
Log in

Magnetic Properties of Pt-Based Nanoalloys: A Critical Review

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, magnetic nanoalloys (MNAs) have attracted many attentions from all over the world, due to their potential applications in the broad fields of magneto-optics, data storage, engineering, and biology. Among these MNAs, Pt–M (M = Fe, Co, Ni) MNAs have been considered to be the most promising ones, due to their superparamagnetism and response to a magnetic field. Here, we firstly review the experimental work on the synthesis, characterization, and magnetic properties of Pt–Fe, Pt–Co, and Pt–Ni MNAs. Then, we discuss the recent theoretical work on Pt–Fe, Pt–Co, and Pt–Ni MNAs. Moreover, we also review the main applications of Pt–Fe, Pt–Co, and Pt–Ni MNAs in the fields of biology, information storage, and magnetic separation. It is found that the size, shape, and composition of Pt–Fe, Pt–Co, and Pt–Ni MNAs play a critical role on their fundamental magnetic properties from both the experimental and theoretical points of view. It is expected that this review could be a valuable resource for both experimental and theoretical researchers, who are interested in Pt-based MNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew (2011). Nano Lett. 11, 1237–1240.

    Article  CAS  Google Scholar 

  2. C. Petit, S. Rusponi, and H. Brune (2004). J. Appl. Phys. 95, 4251–4260.

    Article  CAS  Google Scholar 

  3. X. Sun, Y. Huang, and D. E. Nikles (2004). Int. J. Nanotechnol. 1, 328–346.

    Article  CAS  Google Scholar 

  4. S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal (2011). J. Mater. Chem. 21, 16819–16845.

    Article  CAS  Google Scholar 

  5. G. Reiss and A. Hütten (2005). Nat. Mater. 4, 725–726.

    Article  CAS  Google Scholar 

  6. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun (2010). Adv. Mater. 22, 2729–2742.

    Article  CAS  Google Scholar 

  7. N. A. Frey, S. Peng, K. Cheng, and S. Sun (2009). Chem. Soc. Rev. 38, 2532–2542.

    Article  CAS  Google Scholar 

  8. S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi (2011). Adv. Colloid Interface Sci. 166, 8–23.

    Article  CAS  Google Scholar 

  9. C. S. Brazel (2009). Pharm. Res. 26, 644–656.

    Article  CAS  Google Scholar 

  10. H. Khurshid, Y. Huang, M. Bonder, and G. Hadjipanayis (2009). J. Magn. Magn. Mater. 321, 277–280.

    Article  CAS  Google Scholar 

  11. S. Sun, C. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989–1992.

    Article  CAS  Google Scholar 

  12. A. Kumbhar, L. Spinu, F. Agnoli, K.-Y. Wang, W. Zhou, and C. J. O’Connor (2001). IEEE Trans. Magn. 37, 2216–2218.

    Article  CAS  Google Scholar 

  13. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner (2000). IEEE Trans. Magn. 36, 10–15.

    Article  CAS  Google Scholar 

  14. J. Mallet, K. Yu-Zhang, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, and L. Piraux (2005). J. Phys. D: Appl. Phys. 38, 909.

    Article  CAS  Google Scholar 

  15. Y. Zhai, H. Zhang, D. Xing, and Z.-G. Shao (2007). J. Power Sources 164, 126–133.

    Article  CAS  Google Scholar 

  16. N. Semagina and L. Kiwi-Minsker (2009). Cat. Rev. 51, 147–217.

    Article  CAS  Google Scholar 

  17. Y. Xia, B. Gates, Y. Yin, and Y. Lu (2000). Adv. Mater. 12, 693–713.

    Article  CAS  Google Scholar 

  18. S. Sun (2006). Adv. Mater. 18, 393–404.

    Article  CAS  Google Scholar 

  19. V. Dupuis, N. Blanc, F. Tournus, A. Tamion, J. Tuaillon-Combes, L. Bardotti, and O. Boisron (2011). IEEE Trans. Magn. 47, 3358–3361.

    Article  CAS  Google Scholar 

  20. T. Hyeon (2003). Chem. Commun.  8, 927–934.

    Article  CAS  Google Scholar 

  21. Y. Bao, T. Wen, A. C. S. Samia, A. Khandhar, and K. M. Krishnan (2016). J. Mater. Sci. 51, 513–553.

    Article  CAS  Google Scholar 

  22. M. Farahmandjou (2012). Int. J. Phys. Sci. 7, 1938–1942.

    CAS  Google Scholar 

  23. H.-W. Cheng, J. Luo, and C.-J. Zhong (2014). J. Mater. Chem. B 2, 6904–6916.

    Article  CAS  Google Scholar 

  24. Y. Pan, X. Du, F. Zhao, and B. Xu (2012). Chem. Soc. Rev. 41, 2912–2942.

    Article  CAS  Google Scholar 

  25. D. Peddis, C. Cannas, A. Musinu, and G. Piccaluga (2009). Chem. Eur. J. 15, 7822–7829.

    Article  CAS  Google Scholar 

  26. J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon (2011). Nature Nanotech. 6, 418–422.

    Article  CAS  Google Scholar 

  27. Y. Xu, J. Sherwood, Y. Qin, R. A. Holler, and Y. Bao (2015). Nanoscale 7, 12641–12649.

    Article  CAS  Google Scholar 

  28. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845–910.

    Article  CAS  Google Scholar 

  29. Y. Liu, D. Li, and S. Sun (2011). J. Mater. Chem. 21, 12579–12587.

    Article  CAS  Google Scholar 

  30. Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, and F. F. Tao (2012). Chem. Soc. Rev. 41, 8140–8162.

    Article  CAS  Google Scholar 

  31. H. Bönnemann and R. M. Richards (2001). Eur. J. Inorg. Chem. 2001, 2455–2480.

    Article  Google Scholar 

  32. N. Toshima and T. Yonezawa (1998). New J. Chem. 22, 1179–1201.

    Article  CAS  Google Scholar 

  33. F. Fievet, J. Lagier, and M. Figlarz (1989). MRS Bull. 14, 29–34.

    Article  CAS  Google Scholar 

  34. R. Harpeness and A. Gedanken (2005). J. Mater. Chem. 15, 698–702.

    Article  CAS  Google Scholar 

  35. K. Sato, B. Jeyadevan, and K. Tohji (2005). J. Magn. Magn. Mater. 289, 1–4.

    Article  CAS  Google Scholar 

  36. Y. Vasquez, A. K. Sra, and R. E. Schaak (2005). J. Am. Chem. Soc. 127, 12504–12505.

    Article  CAS  Google Scholar 

  37. B. H. An, J. H. Wu, H. L. Liu, S. P. Ko, J.-S. Ju, and Y. K. Kim (2008). Colloids Surf. A 313, 250–253.

    Article  CAS  Google Scholar 

  38. K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Görlitz, and H. Weller (2007). Small 3, 271–274.

    Article  CAS  Google Scholar 

  39. K. Ahrenstorf, H. Heller, A. Kornowski, J. A. Broekaert, and H. Weller (2008). Adv. Funct. Mater. 18, 3850–3856.

    Article  CAS  Google Scholar 

  40. Q. Liu, Z. Yan, N. L. Henderson, J. C. Bauer, D. W. Goodman, J. D. Batteas, and R. E. Schaak (2009). J. Am. Chem. Soc. 131, 5720–5721.

    Article  CAS  Google Scholar 

  41. X. Sun, Z. Y. Jia, Y. H. Huang, J. W. Harrell, D. E. Nikles, K. Sun, and L. M. Wang (2004). J. Appl. Phys. 95, 6747–6749.

    Article  CAS  Google Scholar 

  42. M. Mandal, S. Kundu, T. K. Sau, S. Yusuf, and T. Pal (2003). Chem. Mater. 15, 3710–3715.

    Article  CAS  Google Scholar 

  43. H. Wang, P. Shang, J. Zhang, M. Guo, Y. Mu, Q. Li, and H. Wang (2013). Chem. Mater. 25, 2450–2454.

    Article  CAS  Google Scholar 

  44. B. D. Reiss, C. Mao, D. J. Solis, K. S. Ryan, T. Thomson, and A. M. Belcher (2004). Nano Lett. 4, 1127–1132.

    Article  CAS  Google Scholar 

  45. Y. Yu, W. Yang, X. Sun, W. Zhu, X.-Z. Li, D. Sellmyer, and S. Sun (2014). Nano Lett. 14, 2778–2782.

    Article  CAS  Google Scholar 

  46. S. Figueroa, S. Stewart, T. Rueda, A. Hernando, and P. De la Presa (2011). J. Phys. Chem. C 115, 5500–5508.

    Article  CAS  Google Scholar 

  47. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo (2011). Nanoscale 3, 4474–4502.

    Article  CAS  Google Scholar 

  48. L. A. Green, T. T. Thuy, D. M. Mott, S. Maenosono, and N. T. K. Thanh (2014). RSC Adv. 4, 1039–1044.

    Article  CAS  Google Scholar 

  49. J. Rockenberger, E. C. Scher, and A. P. Alivisatos (1999). J. Am. Chem. Soc. 121, 11595–11596.

    Article  CAS  Google Scholar 

  50. H. Khurshid, V. Tzitzios, L. Colak, F. Fang, and G. Hadjipanayis (2010). J. Phys.: Conf. Ser. 200, 072049.

    Google Scholar 

  51. N. R. Jana, Y. Chen, and X. Peng (2004). Chem. Mater. 16, 3931–3935.

    Article  CAS  Google Scholar 

  52. A. C. Samia, K. Hyzer, J. A. Schlueter, C.-J. Qin, J. S. Jiang, S. D. Bader, and X.-M. Lin (2005). J. Am. Chem. Soc. 127, 4126–4127.

    Article  CAS  Google Scholar 

  53. D. Ung, L. D. Tung, G. Caruntu, D. Delaportas, I. Alexandrou, I. A. Prior, and N. T. Thanh (2009). CrystEngComm 11, 1309–1316.

    Article  CAS  Google Scholar 

  54. S. Sun, E. E. Fullerton, D. Weller, and C. Murray (2001). IEEE Trans. Magn. 37, 1239–1243.

    Article  CAS  Google Scholar 

  55. W. C. Choi, J. D. Kim, and S. I. Woo (2002). Catal. Today 74, 235–240.

    Article  CAS  Google Scholar 

  56. S. Momose, H. Kodama, T. Uzumaki, and A. Tanaka (2005). Jpn. J. Appl. Phys. 44, 1147.

    Article  CAS  Google Scholar 

  57. C. Wang, G. Wang, D. van der Vliet, K. C. Chang, N. M. Markovic, and V. R. Stamenkovic (2010). Phys. Chem. Chem. Phys. 12, 6933–6939.

    Article  CAS  Google Scholar 

  58. E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, Ö. Festin, P. Svedlindh, M. Haase, and H. Weller (2003). J. Am. Chem. Soc. 125, 9090–9101.

    Article  CAS  Google Scholar 

  59. E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller (2002). J. Am. Chem. Soc. 124, 11480–11485.

    Article  CAS  Google Scholar 

  60. J.-I. Park, M. G. Kim, Y.-W. Jun, J. S. Lee, W.-R. Lee, and J. Cheon (2004). J. Am. Chem. Soc. 126, 9072–9078.

    Article  CAS  Google Scholar 

  61. Y. Chen, F. Yang, Y. Dai, W. Wang, and S. Chen (2008). J. Phys. Chem. C 112, 1645–1649.

    Article  CAS  Google Scholar 

  62. A. Chen and P. Holt-Hindle (2010). Chem. Rev. 110, 3767–3804.

    Article  CAS  Google Scholar 

  63. I.-I. S. Lim Molecularly Mediated Assembly of Nanoparticles Towards Functional Nanostructures (ProQuest Publishers, Michigan, 2008).

    Google Scholar 

  64. L. Santos, C. Oliveira, I. Moraes, and E. Ticianelli (2006). J. Electroanal. Chem. 596, 141–148.

    Article  CAS  Google Scholar 

  65. Y. Gao, X. W. Zhang, Z. G. Yin, S. Qu, J. B. You, and N. F. Chen (2010). Nanoscale Res Lett 5, 1–6.

    Article  CAS  Google Scholar 

  66. S. Shamaila, R. Sharif, S. Riaz, M. Ma, M. Khaleeq-ur-Rahman, and X. F. Han (2008). J. Magn. Magn. Mater. 320, 1803–1809.

    Article  CAS  Google Scholar 

  67. Z. Hao, L. Jing, J. P. Liu, Z. L. Wang, and S. Shouheng (2002). Nature 420, 395–398.

    Article  CAS  Google Scholar 

  68. Y. Benguedouar, N. Keghouche, and J. Belloni (2012). Mater. Sci. Eng. B 177, 27–33.

    Article  CAS  Google Scholar 

  69. Y. Li, X. L. Zhang, R. Qiu, R. Qiao, and Y. S. Kang (2007). J. Phys. Chem. C 111, 10747–10750.

    Article  CAS  Google Scholar 

  70. P. Gütlich, R. Link, and A. Trautwein Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, Berlin, 2013).

    Google Scholar 

  71. F. Harraz, A. Salem, B. Mohamed, A. Kandil, and I. Ibrahim (2013). Appl. Surf. Sci. 264, 391–398.

    Article  CAS  Google Scholar 

  72. R. Liu, Q. Zhao, Y. Li, G. Zhang, F. Zhang and X. Fan (2013). J. Nanomater. 2013, 1–7.

    Google Scholar 

  73. A. Meffre, B. Mehdaoui, V. Kelsen, P. F. Fazzini, J. Carrey, S. Lachaize, M. Respaud, and B. Chaudret (2012). Nano Lett. 12, 4722–4728.

    Article  CAS  Google Scholar 

  74. J.-Y. Bigot, H. Kesserwan, V. R. Halté, O. Ersen, M. S. Moldovan, T. H. Kim, J.-T. Jang, and J. Cheon (2012). Nano Lett. 12, 1189–1197.

    Article  CAS  Google Scholar 

  75. M. Faraji, Y. Yamini, and M. Rezaee (2010). J. Iran. Chem. Soc. 7, 1–37.

    Article  CAS  Google Scholar 

  76. H. Ulrichs, V. Demidov, S. Demokritov, W. Lim, J. Melander, N. Ebrahim-Zadeh, and S. Urazhdin (2013). Appl. Phys. Lett. 102, 132402.

    Article  CAS  Google Scholar 

  77. P. Poulopoulos, M. Angelakeris, E. T. Papaioannou, N. Flevaris, D. Niarchos, M. Nyvlt, V. Prosser, S. Visnovsky, C. Mueller, and P. Fumagalli (2003). J. Appl. Phys. 94, 7662–7669.

    Article  CAS  Google Scholar 

  78. J. R. Melander, H. Ulrichs, V. E. Demidov, S. O. Demokritov, W. L. Lim, N. Ebrahim-Zadeh, and S. Urazhdinm (2013). Appl. Phys. Lett. 102, 132402.

    Article  CAS  Google Scholar 

  79. O. Gutfleisch, J. Lyubina, K. H. Müller, and L. Schultz (2005). Adv. Eng. Mater. 7, 208–212.

    Article  CAS  Google Scholar 

  80. D. Weller and M. F. Doerner (2000). Annu. Rev. Mater. Sci. 30, 611–644.

    Article  CAS  Google Scholar 

  81. Y.-W. Jun, J.-S. Choi, and J. Cheon (2007). Chem. Commun. 12, 1203–1214.

    Article  Google Scholar 

  82. B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann (2003). J. Magn. Magn. Mater. 266, 142–154.

    Article  CAS  Google Scholar 

  83. B. Cullity Introduction to Magnetic Materials, (Addison-Wesley, Reading, MA, 1972).

    Google Scholar 

  84. J. Kim, C. Rong, J. P. Liu, and S. Sun (2009). Adv. Mater. 21, 906–909.

    Article  CAS  Google Scholar 

  85. J. Kim, C. Rong, Y. Lee, J. P. Liu, and S. Sun (2008). Chem. Mater. 20, 7242–7245.

    Article  CAS  Google Scholar 

  86. M. Ulmeanu, C. Antoniak, U. Wiedwald, M. Farle, Z. Frait, and S. Sun (2004). Phys. Rev. B 69, 054417.

    Article  CAS  Google Scholar 

  87. H. G. Boyen, K. Fauth, B. Stahl, P. Ziemann, G. Kästle, F. Weigl, F. Banhart, M. Hessler, G. SCHüTZ, and N. S. Gajbhiye (2005). Adv. Mater. 17, 574–578.

    Article  CAS  Google Scholar 

  88. O. Robach, C. Quiros, S. Valvidares, C. Walker, and S. Ferrer (2003). J. Magn. Magn. Mater. 264, 202–208.

    Article  CAS  Google Scholar 

  89. Y. Ding, J. Chen, and E. Liu (2005). Thin Solid Films 474, 141–145.

    Article  CAS  Google Scholar 

  90. J. Kim, Y. Lee, and S. Sun (2010). J. Am. Chem. Soc. 132, 4996–4997.

    Article  CAS  Google Scholar 

  91. M. Yu, Y. Liu, and D. Sellmyer (2000). J. Appl. Phys. 87, 6959–6961.

    Article  CAS  Google Scholar 

  92. C. Andrew, M. Mizuno, Y. Sasaki, H. Kondo, and K. Hiraga (2002). Appl. Phys. Lett. 81, 3768–3770.

    Article  CAS  Google Scholar 

  93. V. Tzitzios, D. Niarchos, G. Margariti, J. Fidler, and D. Petridis (2005). Nanotechnology 16, 287.

    Article  CAS  Google Scholar 

  94. D. Weller, A. Moser, L. Folks, M. Best, and W. Lee (2000). IEEE Trans. Magn. 36, 10.

    Article  CAS  Google Scholar 

  95. Y. Xu, Z. Sun, Y. Qiang, and D. Sellmyer (2003). J. Magn. Magn. Mater. 266, 164–170.

    Article  CAS  Google Scholar 

  96. W.-F. Huang, Q. Zhang, D.-F. Zhang, J. Zhou, C. Si, L. Guo, W.-S. Chu, and Z.-Y. Wu (2013). J. Phys. Chem. C 117, 6872–6879.

    Article  CAS  Google Scholar 

  97. I. S. Lee, N. Lee, J. Park, B. H. Kim, Y.-W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik, and T. Hyeon (2006). J. Am. Chem. Soc. 128, 10658–10659.

    Article  CAS  Google Scholar 

  98. M. K. Debe (2012). Nature 486, 43–51.

    Article  CAS  Google Scholar 

  99. Y. Luo, M. U. Sreekuttan, J. M. Mora-Hernandez, and N. Alonso-Vante (2014). J. Electrochem. Soc. 26, 1507.

    Google Scholar 

  100. J. Dalmon (1979). J. Catal. 60, 325–334.

    Article  CAS  Google Scholar 

  101. G. Martin (1981). Revue de Physique Appliquée 16, 181–191.

    Article  CAS  Google Scholar 

  102. T. Daibou, M. Amano, D. Saida, J. Ito, Y. Ohsawa, C. Kamata, S. Kashiwada and H. Yoda (2014). U.S. Patent 8,686,521.

  103. J. Borrás-Almenar, J. Clemente-Juan, E. Coronado, and B. Tsukerblat (1999). Inorg. Chem. 38, 6081–6088.

    Article  CAS  Google Scholar 

  104. J. A. C. Bland and B. Heinrich Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties (Springer, Berlin, 2006).

    Google Scholar 

  105. P. P. Singh (2003). J. Magn. Magn. Mater. 261, 347–352.

    Article  CAS  Google Scholar 

  106. Y. Wu, S. Cai, D. Wang, W. He, and Y. Li (2012). J. Am. Chem. Soc. 134, 8975–8981.

    Article  CAS  Google Scholar 

  107. S. Sahoo, A. Hucht, M. E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, and D. Fritsch (2010). Phys. Rev. B 82, 054418.

    Article  CAS  Google Scholar 

  108. A. M. Conte, S. Fabris, and S. Baroni (2008). Phys. Rev. B 78, 014416.

    Article  CAS  Google Scholar 

  109. M. S. Daw, S. M. Foiles, and M. I. Baskes (1993). Mater. Sci. Eng. R 9, 251–310.

    CAS  Google Scholar 

  110. F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.

    Article  CAS  Google Scholar 

  111. P. A. M. Dirac The Principles of Quantum Mechanics, vol. 27 (Oxford University Press, New York, 1981).

    Google Scholar 

  112. P. Hohenberg and W. Kohn (1964). Phys. Rev. 136, B864.

    Article  Google Scholar 

  113. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133–A1138.

    Article  Google Scholar 

  114. D. Cheng, X. Qiu, and H. Yu (2014). Phys. Chem. Chem. Phys. 16, 20377–20381.

    Article  CAS  Google Scholar 

  115. D. Cheng and W. Wang (2012). Nanoscale 4, 2408–2415.

    Article  CAS  Google Scholar 

  116. W. Xu, D. Cheng, M. Niu, X. Shao, and W. Wang (2012). Electrochim. Acta 76, 440–445.

    Article  CAS  Google Scholar 

  117. Y. Yang, Z. Zhao, R. Cui, H. Wu, and D. Cheng (2014). J. Phys. Chem. C 119, 10888–10895.

    Article  CAS  Google Scholar 

  118. D. Cheng, S. Yuan, and R. Ferrando (2013). J. Phys. Condens. Matter 25, 355008.

    Article  CAS  Google Scholar 

  119. D. Cheng, W. Wang, S. Huang, and D. Cao (2008). J. Phys. Chem. C 112, 4855–4860.

    Article  CAS  Google Scholar 

  120. D. Cheng, W. Wang, and S. Huang (2006). J. Phys. Chem. B 110, 16193–16196.

    Article  CAS  Google Scholar 

  121. D. Cheng, S. Huang, and W. Wang (2006). Chem. Phys. 330, 423–430.

    Article  CAS  Google Scholar 

  122. D. Cheng, W. Wang, and S. Huang (2007). J. Phys. Chem. C 111, 8037–8042.

    Article  CAS  Google Scholar 

  123. D. Cheng and D. Cao (2008). Chem. Phys. Lett. 461, 71–76.

    Article  CAS  Google Scholar 

  124. D. Cheng and M. Hou (2010). Eur. Phys. J. B 74, 379–390.

    Article  CAS  Google Scholar 

  125. Z. Zhao, M. Li, D. Cheng, and J. Zhu (2014). Chem. Phys. 441, 152–158.

    Article  CAS  Google Scholar 

  126. F. Aguilera-Granja, R. Longo, L. Gallego, and A. Vega (2010). J. Chem. Phys. 132, 184507.

    Article  CAS  Google Scholar 

  127. P. Entel and M. E. Gruner (2009). J. Phys. Condens. Matter 21, 064228.

    Article  CAS  Google Scholar 

  128. M. E. Gruner, G. Rollmann, P. Entel, and M. Farle (2008). Phys. Rev. Lett. 100, 087203.

    Article  CAS  Google Scholar 

  129. J. Montejano-Carrizales, F. Aguilera-Granja, C. Goyhenex, V. Pierron-Bohnes, and J. Morán-López (2014). J. Magn. Magn. Mater. 355, 215–224.

    Article  CAS  Google Scholar 

  130. J. Montejano-Carrizales, F. Aguilera-Granja, and J. Morán-López (2011). Eur. Phys. J. D 64, 53–62.

    Article  CAS  Google Scholar 

  131. J. Alonso (2000). Chem. Rev. 100, 637–678.

    Article  CAS  Google Scholar 

  132. A. Sebetci (2012). J. Magn. Magn. Mater. 324, 588–594.

    Article  CAS  Google Scholar 

  133. W. Hu, H. Yuan, H. Chen, G. Wang, and G. Zhang (2014). Phys. Lett. A 378, 198–206.

    Article  CAS  Google Scholar 

  134. R.-J. Feng, X.-H. Xu, and H.-S. Wu (2007). J. Magn. Magn. Mater. 308, 131–136.

    Article  CAS  Google Scholar 

  135. D. Guedes-Sobrinho, R. K. Nomiyama, A. S. Chaves, M. J. Piotrowski, and J. L. Da Silva (2015). J. Phys. Chem. C 119, 15669–15679.

    Article  CAS  Google Scholar 

  136. K. M. Tsysar, D. I. Bazhanov, E. M. Smelova, and A. M. Saletsky (2014). Phys. Status. Solidi. B 251, 871–876.

    Article  CAS  Google Scholar 

  137. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289–290, 315–340.

    Article  CAS  Google Scholar 

  138. E. Gyenge, M. Atwan, and D. Northwood (2006). J. Electrochem. Soc. 153, A150–A158.

    Article  CAS  Google Scholar 

  139. T. Pellegrino, S. Kudera, T. Liedl, A. Muñoz Javier, L. Manna, and W. J. Parak (2005). Small 1, 48–63.

    Article  CAS  Google Scholar 

  140. N. Wang, J. Butler, and D. Ingber (1993). Science 260, 1124–1127.

    Article  CAS  Google Scholar 

  141. K. Tsang (2003). Chem. Commun. 15, 1966–1967.

    Google Scholar 

  142. H. Gu, P.-L. Ho, K. W. Tsang, L. Wang, and B. Xu (2003). J. Am. Chem. Soc. 125, 15702–15703.

    Article  CAS  Google Scholar 

  143. J.-H. Park, C. Park, T. Jeong, M. T. Moneck, N. T. Nufer, and J.-G. Zhu (2008). J. Appl. Phys. 103, 07A917.

    Google Scholar 

  144. M. Futamoto, Y. Hirayama, K. Ito, K. Yoshida, Y. Honda and N. Inaba (2001). U.S. Patent 6,183,893.

  145. D. Rawtani and Y. K. Agrawal (2014). Nanobiomed 1, 1–15.

    Article  Google Scholar 

  146. M. Takahashi, T. Ogawa, D. Hasegawa, and B. Jeyadevan (2005). J. Appl. Phys. 97, 10J301.

    Google Scholar 

  147. J.-C. Eloi, L. Chabanne, G. R. Whittell, and I. Manners (2008). Mater. Today 11, 28–36.

    Article  CAS  Google Scholar 

  148. T. L. Da Silva and L. C. Varanda (2011). Nano Res. 4, 666–674.

    Article  CAS  Google Scholar 

  149. H. Yang, J. Zhang, Q. Tian, H. Hu, Y. Fang, H. Wu, and S. Yang (2010). J. Magn. Magn. Mater. 322, 973–977.

    Article  CAS  Google Scholar 

  150. S.-W. Chou, Y.-H. Shau, P.-C. Wu, Y.-S. Yang, D.-B. Shieh, and C.-C. Chen (2010). J. Am. Chem. Soc. 132, 13270–13278.

    Article  CAS  Google Scholar 

  151. S. Giri, B. G. Trewyn, M. P. Stellmaker, and V. S. Y. Lin (2005). Angew. Chem. Int. Ed. 44, 5038–5044.

    Article  CAS  Google Scholar 

  152. C. Bergemann, D. Müller-Schulte, J. Oster, L. À. Brassard, and A. Lübbe (1999). J. Magn. Magn. Mater. 194, 45–52.

    Article  CAS  Google Scholar 

  153. B. Panella, A. Vargas and A. Baiker (2009). J. Catal. 261, 88–93.

    Article  CAS  Google Scholar 

  154. Y. JunáPark (2006) Chem. Commun. 15, 1619–1621.

    Google Scholar 

  155. J.-I. Park and J. Cheon (2001). J. Am. Chem. Soc. 123, 5743–5746.

    Article  CAS  Google Scholar 

  156. J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo, and Q. Wang (2005). J. Catal. 229, 114–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 21576008, 91334203, 21476020), Beijing Higher Education Young Elite Teacher Project, BUCT Fund for Disciplines Construction and Development (Project No. XK1501) and Fundamental Research Funds for the Central Universities (Project No. buctrc201530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daojian Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Fisher, A., Shen, Y. et al. Magnetic Properties of Pt-Based Nanoalloys: A Critical Review. J Clust Sci 27, 817–843 (2016). https://doi.org/10.1007/s10876-016-0983-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0983-1

Keywords

Navigation