Journal of Cluster Science

, Volume 27, Issue 3, pp 817–843 | Cite as

Magnetic Properties of Pt-Based Nanoalloys: A Critical Review

  • Zheng Zhao
  • Adrian Fisher
  • Yanchun Shen
  • Daojian Cheng
Review Paper


In recent years, magnetic nanoalloys (MNAs) have attracted many attentions from all over the world, due to their potential applications in the broad fields of magneto-optics, data storage, engineering, and biology. Among these MNAs, Pt–M (M = Fe, Co, Ni) MNAs have been considered to be the most promising ones, due to their superparamagnetism and response to a magnetic field. Here, we firstly review the experimental work on the synthesis, characterization, and magnetic properties of Pt–Fe, Pt–Co, and Pt–Ni MNAs. Then, we discuss the recent theoretical work on Pt–Fe, Pt–Co, and Pt–Ni MNAs. Moreover, we also review the main applications of Pt–Fe, Pt–Co, and Pt–Ni MNAs in the fields of biology, information storage, and magnetic separation. It is found that the size, shape, and composition of Pt–Fe, Pt–Co, and Pt–Ni MNAs play a critical role on their fundamental magnetic properties from both the experimental and theoretical points of view. It is expected that this review could be a valuable resource for both experimental and theoretical researchers, who are interested in Pt-based MNAs.


Pt-based magnetic nanoalloys Magnetic properties Experimental research Computer simulations Material applications 



This work is supported by the National Natural Science Foundation of China (Nos. 21576008, 91334203, 21476020), Beijing Higher Education Young Elite Teacher Project, BUCT Fund for Disciplines Construction and Development (Project No. XK1501) and Fundamental Research Funds for the Central Universities (Project No. buctrc201530).


  1. 1.
    L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew (2011). Nano Lett. 11, 1237–1240.CrossRefGoogle Scholar
  2. 2.
    C. Petit, S. Rusponi, and H. Brune (2004). J. Appl. Phys. 95, 4251–4260.CrossRefGoogle Scholar
  3. 3.
    X. Sun, Y. Huang, and D. E. Nikles (2004). Int. J. Nanotechnol. 1, 328–346.CrossRefGoogle Scholar
  4. 4.
    S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal (2011). J. Mater. Chem. 21, 16819–16845.CrossRefGoogle Scholar
  5. 5.
    G. Reiss and A. Hütten (2005). Nat. Mater. 4, 725–726.CrossRefGoogle Scholar
  6. 6.
    R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun (2010). Adv. Mater. 22, 2729–2742.CrossRefGoogle Scholar
  7. 7.
    N. A. Frey, S. Peng, K. Cheng, and S. Sun (2009). Chem. Soc. Rev. 38, 2532–2542.CrossRefGoogle Scholar
  8. 8.
    S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi (2011). Adv. Colloid Interface Sci. 166, 8–23.CrossRefGoogle Scholar
  9. 9.
    C. S. Brazel (2009). Pharm. Res. 26, 644–656.CrossRefGoogle Scholar
  10. 10.
    H. Khurshid, Y. Huang, M. Bonder, and G. Hadjipanayis (2009). J. Magn. Magn. Mater. 321, 277–280.CrossRefGoogle Scholar
  11. 11.
    S. Sun, C. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989–1992.CrossRefGoogle Scholar
  12. 12.
    A. Kumbhar, L. Spinu, F. Agnoli, K.-Y. Wang, W. Zhou, and C. J. O’Connor (2001). IEEE Trans. Magn. 37, 2216–2218.CrossRefGoogle Scholar
  13. 13.
    D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner (2000). IEEE Trans. Magn. 36, 10–15.CrossRefGoogle Scholar
  14. 14.
    J. Mallet, K. Yu-Zhang, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, and L. Piraux (2005). J. Phys. D: Appl. Phys. 38, 909.CrossRefGoogle Scholar
  15. 15.
    Y. Zhai, H. Zhang, D. Xing, and Z.-G. Shao (2007). J. Power Sources 164, 126–133.CrossRefGoogle Scholar
  16. 16.
    N. Semagina and L. Kiwi-Minsker (2009). Cat. Rev. 51, 147–217.CrossRefGoogle Scholar
  17. 17.
    Y. Xia, B. Gates, Y. Yin, and Y. Lu (2000). Adv. Mater. 12, 693–713.CrossRefGoogle Scholar
  18. 18.
    S. Sun (2006). Adv. Mater. 18, 393–404.CrossRefGoogle Scholar
  19. 19.
    V. Dupuis, N. Blanc, F. Tournus, A. Tamion, J. Tuaillon-Combes, L. Bardotti, and O. Boisron (2011). IEEE Trans. Magn. 47, 3358–3361.CrossRefGoogle Scholar
  20. 20.
    T. Hyeon (2003). Chem. Commun.  8, 927–934.CrossRefGoogle Scholar
  21. 21.
    Y. Bao, T. Wen, A. C. S. Samia, A. Khandhar, and K. M. Krishnan (2016). J. Mater. Sci. 51, 513–553.CrossRefGoogle Scholar
  22. 22.
    M. Farahmandjou (2012). Int. J. Phys. Sci. 7, 1938–1942.Google Scholar
  23. 23.
    H.-W. Cheng, J. Luo, and C.-J. Zhong (2014). J. Mater. Chem. B 2, 6904–6916.CrossRefGoogle Scholar
  24. 24.
    Y. Pan, X. Du, F. Zhao, and B. Xu (2012). Chem. Soc. Rev. 41, 2912–2942.CrossRefGoogle Scholar
  25. 25.
    D. Peddis, C. Cannas, A. Musinu, and G. Piccaluga (2009). Chem. Eur. J. 15, 7822–7829.CrossRefGoogle Scholar
  26. 26.
    J.-H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K. I. Park, and J. Cheon (2011). Nature Nanotech. 6, 418–422.CrossRefGoogle Scholar
  27. 27.
    Y. Xu, J. Sherwood, Y. Qin, R. A. Holler, and Y. Bao (2015). Nanoscale 7, 12641–12649.CrossRefGoogle Scholar
  28. 28.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845–910.CrossRefGoogle Scholar
  29. 29.
    Y. Liu, D. Li, and S. Sun (2011). J. Mater. Chem. 21, 12579–12587.CrossRefGoogle Scholar
  30. 30.
    Y. Pei, G. Zhou, N. Luan, B. Zong, M. Qiao, and F. F. Tao (2012). Chem. Soc. Rev. 41, 8140–8162.CrossRefGoogle Scholar
  31. 31.
    H. Bönnemann and R. M. Richards (2001). Eur. J. Inorg. Chem. 2001, 2455–2480.CrossRefGoogle Scholar
  32. 32.
    N. Toshima and T. Yonezawa (1998). New J. Chem. 22, 1179–1201.CrossRefGoogle Scholar
  33. 33.
    F. Fievet, J. Lagier, and M. Figlarz (1989). MRS Bull. 14, 29–34.CrossRefGoogle Scholar
  34. 34.
    R. Harpeness and A. Gedanken (2005). J. Mater. Chem. 15, 698–702.CrossRefGoogle Scholar
  35. 35.
    K. Sato, B. Jeyadevan, and K. Tohji (2005). J. Magn. Magn. Mater. 289, 1–4.CrossRefGoogle Scholar
  36. 36.
    Y. Vasquez, A. K. Sra, and R. E. Schaak (2005). J. Am. Chem. Soc. 127, 12504–12505.CrossRefGoogle Scholar
  37. 37.
    B. H. An, J. H. Wu, H. L. Liu, S. P. Ko, J.-S. Ju, and Y. K. Kim (2008). Colloids Surf. A 313, 250–253.CrossRefGoogle Scholar
  38. 38.
    K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Görlitz, and H. Weller (2007). Small 3, 271–274.CrossRefGoogle Scholar
  39. 39.
    K. Ahrenstorf, H. Heller, A. Kornowski, J. A. Broekaert, and H. Weller (2008). Adv. Funct. Mater. 18, 3850–3856.CrossRefGoogle Scholar
  40. 40.
    Q. Liu, Z. Yan, N. L. Henderson, J. C. Bauer, D. W. Goodman, J. D. Batteas, and R. E. Schaak (2009). J. Am. Chem. Soc. 131, 5720–5721.CrossRefGoogle Scholar
  41. 41.
    X. Sun, Z. Y. Jia, Y. H. Huang, J. W. Harrell, D. E. Nikles, K. Sun, and L. M. Wang (2004). J. Appl. Phys. 95, 6747–6749.CrossRefGoogle Scholar
  42. 42.
    M. Mandal, S. Kundu, T. K. Sau, S. Yusuf, and T. Pal (2003). Chem. Mater. 15, 3710–3715.CrossRefGoogle Scholar
  43. 43.
    H. Wang, P. Shang, J. Zhang, M. Guo, Y. Mu, Q. Li, and H. Wang (2013). Chem. Mater. 25, 2450–2454.CrossRefGoogle Scholar
  44. 44.
    B. D. Reiss, C. Mao, D. J. Solis, K. S. Ryan, T. Thomson, and A. M. Belcher (2004). Nano Lett. 4, 1127–1132.CrossRefGoogle Scholar
  45. 45.
    Y. Yu, W. Yang, X. Sun, W. Zhu, X.-Z. Li, D. Sellmyer, and S. Sun (2014). Nano Lett. 14, 2778–2782.CrossRefGoogle Scholar
  46. 46.
    S. Figueroa, S. Stewart, T. Rueda, A. Hernando, and P. De la Presa (2011). J. Phys. Chem. C 115, 5500–5508.CrossRefGoogle Scholar
  47. 47.
    S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo (2011). Nanoscale 3, 4474–4502.CrossRefGoogle Scholar
  48. 48.
    L. A. Green, T. T. Thuy, D. M. Mott, S. Maenosono, and N. T. K. Thanh (2014). RSC Adv. 4, 1039–1044.CrossRefGoogle Scholar
  49. 49.
    J. Rockenberger, E. C. Scher, and A. P. Alivisatos (1999). J. Am. Chem. Soc. 121, 11595–11596.CrossRefGoogle Scholar
  50. 50.
    H. Khurshid, V. Tzitzios, L. Colak, F. Fang, and G. Hadjipanayis (2010). J. Phys.: Conf. Ser. 200, 072049.Google Scholar
  51. 51.
    N. R. Jana, Y. Chen, and X. Peng (2004). Chem. Mater. 16, 3931–3935.CrossRefGoogle Scholar
  52. 52.
    A. C. Samia, K. Hyzer, J. A. Schlueter, C.-J. Qin, J. S. Jiang, S. D. Bader, and X.-M. Lin (2005). J. Am. Chem. Soc. 127, 4126–4127.CrossRefGoogle Scholar
  53. 53.
    D. Ung, L. D. Tung, G. Caruntu, D. Delaportas, I. Alexandrou, I. A. Prior, and N. T. Thanh (2009). CrystEngComm 11, 1309–1316.CrossRefGoogle Scholar
  54. 54.
    S. Sun, E. E. Fullerton, D. Weller, and C. Murray (2001). IEEE Trans. Magn. 37, 1239–1243.CrossRefGoogle Scholar
  55. 55.
    W. C. Choi, J. D. Kim, and S. I. Woo (2002). Catal. Today 74, 235–240.CrossRefGoogle Scholar
  56. 56.
    S. Momose, H. Kodama, T. Uzumaki, and A. Tanaka (2005). Jpn. J. Appl. Phys. 44, 1147.CrossRefGoogle Scholar
  57. 57.
    C. Wang, G. Wang, D. van der Vliet, K. C. Chang, N. M. Markovic, and V. R. Stamenkovic (2010). Phys. Chem. Chem. Phys. 12, 6933–6939.CrossRefGoogle Scholar
  58. 58.
    E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, Ö. Festin, P. Svedlindh, M. Haase, and H. Weller (2003). J. Am. Chem. Soc. 125, 9090–9101.CrossRefGoogle Scholar
  59. 59.
    E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller (2002). J. Am. Chem. Soc. 124, 11480–11485.CrossRefGoogle Scholar
  60. 60.
    J.-I. Park, M. G. Kim, Y.-W. Jun, J. S. Lee, W.-R. Lee, and J. Cheon (2004). J. Am. Chem. Soc. 126, 9072–9078.CrossRefGoogle Scholar
  61. 61.
    Y. Chen, F. Yang, Y. Dai, W. Wang, and S. Chen (2008). J. Phys. Chem. C 112, 1645–1649.CrossRefGoogle Scholar
  62. 62.
    A. Chen and P. Holt-Hindle (2010). Chem. Rev. 110, 3767–3804.CrossRefGoogle Scholar
  63. 63.
    I.-I. S. Lim Molecularly Mediated Assembly of Nanoparticles Towards Functional Nanostructures (ProQuest Publishers, Michigan, 2008).Google Scholar
  64. 64.
    L. Santos, C. Oliveira, I. Moraes, and E. Ticianelli (2006). J. Electroanal. Chem. 596, 141–148.CrossRefGoogle Scholar
  65. 65.
    Y. Gao, X. W. Zhang, Z. G. Yin, S. Qu, J. B. You, and N. F. Chen (2010). Nanoscale Res Lett 5, 1–6.CrossRefGoogle Scholar
  66. 66.
    S. Shamaila, R. Sharif, S. Riaz, M. Ma, M. Khaleeq-ur-Rahman, and X. F. Han (2008). J. Magn. Magn. Mater. 320, 1803–1809.CrossRefGoogle Scholar
  67. 67.
    Z. Hao, L. Jing, J. P. Liu, Z. L. Wang, and S. Shouheng (2002). Nature 420, 395–398.CrossRefGoogle Scholar
  68. 68.
    Y. Benguedouar, N. Keghouche, and J. Belloni (2012). Mater. Sci. Eng. B 177, 27–33.CrossRefGoogle Scholar
  69. 69.
    Y. Li, X. L. Zhang, R. Qiu, R. Qiao, and Y. S. Kang (2007). J. Phys. Chem. C 111, 10747–10750.CrossRefGoogle Scholar
  70. 70.
    P. Gütlich, R. Link, and A. Trautwein Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, Berlin, 2013).Google Scholar
  71. 71.
    F. Harraz, A. Salem, B. Mohamed, A. Kandil, and I. Ibrahim (2013). Appl. Surf. Sci. 264, 391–398.CrossRefGoogle Scholar
  72. 72.
    R. Liu, Q. Zhao, Y. Li, G. Zhang, F. Zhang and X. Fan (2013). J. Nanomater. 2013, 1–7.Google Scholar
  73. 73.
    A. Meffre, B. Mehdaoui, V. Kelsen, P. F. Fazzini, J. Carrey, S. Lachaize, M. Respaud, and B. Chaudret (2012). Nano Lett. 12, 4722–4728.CrossRefGoogle Scholar
  74. 74.
    J.-Y. Bigot, H. Kesserwan, V. R. Halté, O. Ersen, M. S. Moldovan, T. H. Kim, J.-T. Jang, and J. Cheon (2012). Nano Lett. 12, 1189–1197.CrossRefGoogle Scholar
  75. 75.
    M. Faraji, Y. Yamini, and M. Rezaee (2010). J. Iran. Chem. Soc. 7, 1–37.CrossRefGoogle Scholar
  76. 76.
    H. Ulrichs, V. Demidov, S. Demokritov, W. Lim, J. Melander, N. Ebrahim-Zadeh, and S. Urazhdin (2013). Appl. Phys. Lett. 102, 132402.CrossRefGoogle Scholar
  77. 77.
    P. Poulopoulos, M. Angelakeris, E. T. Papaioannou, N. Flevaris, D. Niarchos, M. Nyvlt, V. Prosser, S. Visnovsky, C. Mueller, and P. Fumagalli (2003). J. Appl. Phys. 94, 7662–7669.CrossRefGoogle Scholar
  78. 78.
    J. R. Melander, H. Ulrichs, V. E. Demidov, S. O. Demokritov, W. L. Lim, N. Ebrahim-Zadeh, and S. Urazhdinm (2013). Appl. Phys. Lett. 102, 132402.CrossRefGoogle Scholar
  79. 79.
    O. Gutfleisch, J. Lyubina, K. H. Müller, and L. Schultz (2005). Adv. Eng. Mater. 7, 208–212.CrossRefGoogle Scholar
  80. 80.
    D. Weller and M. F. Doerner (2000). Annu. Rev. Mater. Sci. 30, 611–644.CrossRefGoogle Scholar
  81. 81.
    Y.-W. Jun, J.-S. Choi, and J. Cheon (2007). Chem. Commun. 12, 1203–1214.CrossRefGoogle Scholar
  82. 82.
    B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann (2003). J. Magn. Magn. Mater. 266, 142–154.CrossRefGoogle Scholar
  83. 83.
    B. Cullity Introduction to Magnetic Materials, (Addison-Wesley, Reading, MA, 1972).Google Scholar
  84. 84.
    J. Kim, C. Rong, J. P. Liu, and S. Sun (2009). Adv. Mater. 21, 906–909.CrossRefGoogle Scholar
  85. 85.
    J. Kim, C. Rong, Y. Lee, J. P. Liu, and S. Sun (2008). Chem. Mater. 20, 7242–7245.CrossRefGoogle Scholar
  86. 86.
    M. Ulmeanu, C. Antoniak, U. Wiedwald, M. Farle, Z. Frait, and S. Sun (2004). Phys. Rev. B 69, 054417.CrossRefGoogle Scholar
  87. 87.
    H. G. Boyen, K. Fauth, B. Stahl, P. Ziemann, G. Kästle, F. Weigl, F. Banhart, M. Hessler, G. SCHüTZ, and N. S. Gajbhiye (2005). Adv. Mater. 17, 574–578.CrossRefGoogle Scholar
  88. 88.
    O. Robach, C. Quiros, S. Valvidares, C. Walker, and S. Ferrer (2003). J. Magn. Magn. Mater. 264, 202–208.CrossRefGoogle Scholar
  89. 89.
    Y. Ding, J. Chen, and E. Liu (2005). Thin Solid Films 474, 141–145.CrossRefGoogle Scholar
  90. 90.
    J. Kim, Y. Lee, and S. Sun (2010). J. Am. Chem. Soc. 132, 4996–4997.CrossRefGoogle Scholar
  91. 91.
    M. Yu, Y. Liu, and D. Sellmyer (2000). J. Appl. Phys. 87, 6959–6961.CrossRefGoogle Scholar
  92. 92.
    C. Andrew, M. Mizuno, Y. Sasaki, H. Kondo, and K. Hiraga (2002). Appl. Phys. Lett. 81, 3768–3770.CrossRefGoogle Scholar
  93. 93.
    V. Tzitzios, D. Niarchos, G. Margariti, J. Fidler, and D. Petridis (2005). Nanotechnology 16, 287.CrossRefGoogle Scholar
  94. 94.
    D. Weller, A. Moser, L. Folks, M. Best, and W. Lee (2000). IEEE Trans. Magn. 36, 10.CrossRefGoogle Scholar
  95. 95.
    Y. Xu, Z. Sun, Y. Qiang, and D. Sellmyer (2003). J. Magn. Magn. Mater. 266, 164–170.CrossRefGoogle Scholar
  96. 96.
    W.-F. Huang, Q. Zhang, D.-F. Zhang, J. Zhou, C. Si, L. Guo, W.-S. Chu, and Z.-Y. Wu (2013). J. Phys. Chem. C 117, 6872–6879.CrossRefGoogle Scholar
  97. 97.
    I. S. Lee, N. Lee, J. Park, B. H. Kim, Y.-W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik, and T. Hyeon (2006). J. Am. Chem. Soc. 128, 10658–10659.CrossRefGoogle Scholar
  98. 98.
    M. K. Debe (2012). Nature 486, 43–51.CrossRefGoogle Scholar
  99. 99.
    Y. Luo, M. U. Sreekuttan, J. M. Mora-Hernandez, and N. Alonso-Vante (2014). J. Electrochem. Soc. 26, 1507.Google Scholar
  100. 100.
    J. Dalmon (1979). J. Catal. 60, 325–334.CrossRefGoogle Scholar
  101. 101.
    G. Martin (1981). Revue de Physique Appliquée 16, 181–191.CrossRefGoogle Scholar
  102. 102.
    T. Daibou, M. Amano, D. Saida, J. Ito, Y. Ohsawa, C. Kamata, S. Kashiwada and H. Yoda (2014). U.S. Patent 8,686,521.Google Scholar
  103. 103.
    J. Borrás-Almenar, J. Clemente-Juan, E. Coronado, and B. Tsukerblat (1999). Inorg. Chem. 38, 6081–6088.CrossRefGoogle Scholar
  104. 104.
    J. A. C. Bland and B. Heinrich Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties (Springer, Berlin, 2006).Google Scholar
  105. 105.
    P. P. Singh (2003). J. Magn. Magn. Mater. 261, 347–352.CrossRefGoogle Scholar
  106. 106.
    Y. Wu, S. Cai, D. Wang, W. He, and Y. Li (2012). J. Am. Chem. Soc. 134, 8975–8981.CrossRefGoogle Scholar
  107. 107.
    S. Sahoo, A. Hucht, M. E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, and D. Fritsch (2010). Phys. Rev. B 82, 054418.CrossRefGoogle Scholar
  108. 108.
    A. M. Conte, S. Fabris, and S. Baroni (2008). Phys. Rev. B 78, 014416.CrossRefGoogle Scholar
  109. 109.
    M. S. Daw, S. M. Foiles, and M. I. Baskes (1993). Mater. Sci. Eng. R 9, 251–310.Google Scholar
  110. 110.
    F. Cleri and V. Rosato (1993). Phys. Rev. B 48, 22.CrossRefGoogle Scholar
  111. 111.
    P. A. M. Dirac The Principles of Quantum Mechanics, vol. 27 (Oxford University Press, New York, 1981).Google Scholar
  112. 112.
    P. Hohenberg and W. Kohn (1964). Phys. Rev. 136, B864.CrossRefGoogle Scholar
  113. 113.
    W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133–A1138.CrossRefGoogle Scholar
  114. 114.
    D. Cheng, X. Qiu, and H. Yu (2014). Phys. Chem. Chem. Phys. 16, 20377–20381.CrossRefGoogle Scholar
  115. 115.
    D. Cheng and W. Wang (2012). Nanoscale 4, 2408–2415.CrossRefGoogle Scholar
  116. 116.
    W. Xu, D. Cheng, M. Niu, X. Shao, and W. Wang (2012). Electrochim. Acta 76, 440–445.CrossRefGoogle Scholar
  117. 117.
    Y. Yang, Z. Zhao, R. Cui, H. Wu, and D. Cheng (2014). J. Phys. Chem. C 119, 10888–10895.CrossRefGoogle Scholar
  118. 118.
    D. Cheng, S. Yuan, and R. Ferrando (2013). J. Phys. Condens. Matter 25, 355008.CrossRefGoogle Scholar
  119. 119.
    D. Cheng, W. Wang, S. Huang, and D. Cao (2008). J. Phys. Chem. C 112, 4855–4860.CrossRefGoogle Scholar
  120. 120.
    D. Cheng, W. Wang, and S. Huang (2006). J. Phys. Chem. B 110, 16193–16196.CrossRefGoogle Scholar
  121. 121.
    D. Cheng, S. Huang, and W. Wang (2006). Chem. Phys. 330, 423–430.CrossRefGoogle Scholar
  122. 122.
    D. Cheng, W. Wang, and S. Huang (2007). J. Phys. Chem. C 111, 8037–8042.CrossRefGoogle Scholar
  123. 123.
    D. Cheng and D. Cao (2008). Chem. Phys. Lett. 461, 71–76.CrossRefGoogle Scholar
  124. 124.
    D. Cheng and M. Hou (2010). Eur. Phys. J. B 74, 379–390.CrossRefGoogle Scholar
  125. 125.
    Z. Zhao, M. Li, D. Cheng, and J. Zhu (2014). Chem. Phys. 441, 152–158.CrossRefGoogle Scholar
  126. 126.
    F. Aguilera-Granja, R. Longo, L. Gallego, and A. Vega (2010). J. Chem. Phys. 132, 184507.CrossRefGoogle Scholar
  127. 127.
    P. Entel and M. E. Gruner (2009). J. Phys. Condens. Matter 21, 064228.CrossRefGoogle Scholar
  128. 128.
    M. E. Gruner, G. Rollmann, P. Entel, and M. Farle (2008). Phys. Rev. Lett. 100, 087203.CrossRefGoogle Scholar
  129. 129.
    J. Montejano-Carrizales, F. Aguilera-Granja, C. Goyhenex, V. Pierron-Bohnes, and J. Morán-López (2014). J. Magn. Magn. Mater. 355, 215–224.CrossRefGoogle Scholar
  130. 130.
    J. Montejano-Carrizales, F. Aguilera-Granja, and J. Morán-López (2011). Eur. Phys. J. D 64, 53–62.CrossRefGoogle Scholar
  131. 131.
    J. Alonso (2000). Chem. Rev. 100, 637–678.CrossRefGoogle Scholar
  132. 132.
    A. Sebetci (2012). J. Magn. Magn. Mater. 324, 588–594.CrossRefGoogle Scholar
  133. 133.
    W. Hu, H. Yuan, H. Chen, G. Wang, and G. Zhang (2014). Phys. Lett. A 378, 198–206.CrossRefGoogle Scholar
  134. 134.
    R.-J. Feng, X.-H. Xu, and H.-S. Wu (2007). J. Magn. Magn. Mater. 308, 131–136.CrossRefGoogle Scholar
  135. 135.
    D. Guedes-Sobrinho, R. K. Nomiyama, A. S. Chaves, M. J. Piotrowski, and J. L. Da Silva (2015). J. Phys. Chem. C 119, 15669–15679.CrossRefGoogle Scholar
  136. 136.
    K. M. Tsysar, D. I. Bazhanov, E. M. Smelova, and A. M. Saletsky (2014). Phys. Status. Solidi. B 251, 871–876.CrossRefGoogle Scholar
  137. 137.
    J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289–290, 315–340.CrossRefGoogle Scholar
  138. 138.
    E. Gyenge, M. Atwan, and D. Northwood (2006). J. Electrochem. Soc. 153, A150–A158.CrossRefGoogle Scholar
  139. 139.
    T. Pellegrino, S. Kudera, T. Liedl, A. Muñoz Javier, L. Manna, and W. J. Parak (2005). Small 1, 48–63.CrossRefGoogle Scholar
  140. 140.
    N. Wang, J. Butler, and D. Ingber (1993). Science 260, 1124–1127.CrossRefGoogle Scholar
  141. 141.
    K. Tsang (2003). Chem. Commun. 15, 1966–1967.Google Scholar
  142. 142.
    H. Gu, P.-L. Ho, K. W. Tsang, L. Wang, and B. Xu (2003). J. Am. Chem. Soc. 125, 15702–15703.CrossRefGoogle Scholar
  143. 143.
    J.-H. Park, C. Park, T. Jeong, M. T. Moneck, N. T. Nufer, and J.-G. Zhu (2008). J. Appl. Phys. 103, 07A917.Google Scholar
  144. 144.
    M. Futamoto, Y. Hirayama, K. Ito, K. Yoshida, Y. Honda and N. Inaba (2001). U.S. Patent 6,183,893.Google Scholar
  145. 145.
    D. Rawtani and Y. K. Agrawal (2014). Nanobiomed 1, 1–15.CrossRefGoogle Scholar
  146. 146.
    M. Takahashi, T. Ogawa, D. Hasegawa, and B. Jeyadevan (2005). J. Appl. Phys. 97, 10J301.Google Scholar
  147. 147.
    J.-C. Eloi, L. Chabanne, G. R. Whittell, and I. Manners (2008). Mater. Today 11, 28–36.CrossRefGoogle Scholar
  148. 148.
    T. L. Da Silva and L. C. Varanda (2011). Nano Res. 4, 666–674.CrossRefGoogle Scholar
  149. 149.
    H. Yang, J. Zhang, Q. Tian, H. Hu, Y. Fang, H. Wu, and S. Yang (2010). J. Magn. Magn. Mater. 322, 973–977.CrossRefGoogle Scholar
  150. 150.
    S.-W. Chou, Y.-H. Shau, P.-C. Wu, Y.-S. Yang, D.-B. Shieh, and C.-C. Chen (2010). J. Am. Chem. Soc. 132, 13270–13278.CrossRefGoogle Scholar
  151. 151.
    S. Giri, B. G. Trewyn, M. P. Stellmaker, and V. S. Y. Lin (2005). Angew. Chem. Int. Ed. 44, 5038–5044.CrossRefGoogle Scholar
  152. 152.
    C. Bergemann, D. Müller-Schulte, J. Oster, L. À. Brassard, and A. Lübbe (1999). J. Magn. Magn. Mater. 194, 45–52.CrossRefGoogle Scholar
  153. 153.
    B. Panella, A. Vargas and A. Baiker (2009). J. Catal. 261, 88–93.CrossRefGoogle Scholar
  154. 154.
    Y. JunáPark (2006) Chem. Commun. 15, 1619–1621.Google Scholar
  155. 155.
    J.-I. Park and J. Cheon (2001). J. Am. Chem. Soc. 123, 5743–5746.CrossRefGoogle Scholar
  156. 156.
    J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo, and Q. Wang (2005). J. Catal. 229, 114–118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zheng Zhao
    • 1
  • Adrian Fisher
    • 2
  • Yanchun Shen
    • 3
  • Daojian Cheng
    • 1
    • 2
  1. 1.State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.International Research Center for Soft MatterBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Beijing Information Science & Technology UniversityBeijingPeople’s Republic of China

Personalised recommendations