Journal of Cluster Science

, Volume 26, Issue 4, pp 1091–1102 | Cite as

Ligand Structure Induced Diversification from Dinuclear to 1D Chain Compounds: Syntheses, Structures and Fluorescence Properties

  • Yu Xiao
  • Pu Huang
  • Wei Wang
Original Paper


Using the solvothermal method, we present the comparative preparation of [Zn2(Hfhba)4(phen)2] (1), [Zn2(Hfhba)4(2,2′-bipy)2] (2) and [Zn2(Hfhba)4(4,4′-bipy)2]n (3), where H2fhba is 5-fluoro-2-hydroxy-benzoic acid, phen is 1,10-Phenanthroline, 2,2′-bipy is 2,2′-Bipyridine, 4,4′-bipy is 4,4′-Bipyridine. Complexes 13 were characterized by elemental analysis, IR, UV–Vis spectroscopy, and X-ray single-crystal diffraction. Complexes 1 and 2 are two new dinuclear complexes and 3 is a 1-D polymer. Luminescent properties of 13 have also been studied.


Solvothermal synthesis Crystal structure Luminescence property 



This work is financially supported by Startup foundation for Dr Xiao of Guilin University of Technology.

Supplementary material

10876_2014_799_MOESM1_ESM.docx (2.7 mb)
CCDC 1013842–1013844 contains the supplementary crystallographic data for complex 13. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via Electronic Supplementary Information (ESI) available: [Structure of 2, Packing drawing of 1 and 3.]


  1. 1.
    C. S. Liu, X. S. Shi, J. R. Li, J. J. Wang, and X. H. Bu (2006). Cryst. Growth Des. 6, 656.CrossRefGoogle Scholar
  2. 2.
    B. Zhao, H. L. Gao, X. Y. Chen, P. Cheng, W. Shi, D. Z. Liao, S. P. Yan, and Z. H. Jiang (2006). J. Eur. Chem. 12, 149.CrossRefGoogle Scholar
  3. 3.
    S. Hu, F. Y. Yu, P. Zhang, and D. R. Lin (2013). Dalton Trans. 42, 7731.CrossRefGoogle Scholar
  4. 4.
    S.-H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song, and H. Liang (2013). Inorg. Chim. Acta 396, 119.CrossRefGoogle Scholar
  5. 5.
    J. Yang, Q. Yue, G. D. Li, J. J. Cao, G. H. Li, and J. S. Chen (2006). Inorg. Chem. 45, 2857.CrossRefGoogle Scholar
  6. 6.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, and C. H. Yan (2000). Angew. Chem. Int. Ed. 39, 3644.CrossRefGoogle Scholar
  7. 7.
    R. Q. Zou, H. Sakurai, and Q. Xu (2006). Angew. Chem. Int. Ed. 45, 2542.CrossRefGoogle Scholar
  8. 8.
    P. Li, H. M. Liu, X. G. Lei, X. Y. Huang, D. H. Olson, N. J. Turro, and J. Li (2003). Angew. Chem. Int. Ed. 42, 542.CrossRefGoogle Scholar
  9. 9.
    J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim (2000). Nature 404, 982.CrossRefGoogle Scholar
  10. 10.
    W. Wang, H. Hai, S. H. Zhang, L. Yang, and C. L. Zhang (2014). J. Cluster Sci. 25, (2), 357.CrossRefGoogle Scholar
  11. 11.
    S. Hu, P. Zhang, F. Y. Yu, M. X. Chen, and D. R. Lin (2014). Polyhedron 67, 388.CrossRefGoogle Scholar
  12. 12.
    Q. P. Huang, G. Li, H. Y. Zhang, S.-H. Zhang, and H. P. Li (2014). Z. Anorg. Allg. Chem. 640, (7), 1403.CrossRefGoogle Scholar
  13. 13.
    L. Yang, Q. P. Huang, C. L. Zhang, R. X. Zhao, and S. H. Zhang (2014). Supramol. Chem. 26, (2), 81.CrossRefGoogle Scholar
  14. 14.
    D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, and K. Kim (2006). Angew. Chem. Int. Ed. Engl. 45, 916.CrossRefGoogle Scholar
  15. 15.
    R. Q. Zou, H. Sakurai, S. Han, R. Q. Zhong, and Q. Xu (2007). J. Am. Chem. Soc. 129, 8402.CrossRefGoogle Scholar
  16. 16.
    S. Q. Ma, X. S. Wang, D. Q. Yuan, and H. C. Zhou (2008). Angew. Chem. Int. Ed. Engl. 47, 4130.CrossRefGoogle Scholar
  17. 17.
    S. K. Ghosh, S. Bureekaew, and S. Kitagawa (2008). Angew. Chem. Int. Ed. Engl. 47, 3403.CrossRefGoogle Scholar
  18. 18.
    R. X. Zhao, Q. P. Huang, G. Li, S. H. Zhang, H. Y. Zhang, and L. Yang (2014). J. Cluster Sci. 25, (4), 1099.CrossRefGoogle Scholar
  19. 19.
    N. Guillou, C. Livage, M. Drillon, and G. Férey (2003). Angew. Chem. Int. Ed. Engl. 42, 5314.CrossRefGoogle Scholar
  20. 20.
    C.-L. Zhang, X. F. Jiang, L. Yang, S. H. Zhang, and S. M. Shi (2014). J. Cluster Sci. 25, (2), 459.CrossRefGoogle Scholar
  21. 21.
    J. Zhang, R. Liu, P. Y. Feng, and X. H. Bu (2007). Angew. Chem. Int. Ed. Engl. 46, 8388.CrossRefGoogle Scholar
  22. 22.
    Y. Y. Liu, J. F. Ma, J. Yang, J. C. Ma, and G. J. Ping (2008). CrystEngCommun 10, 565.CrossRefGoogle Scholar
  23. 23.
    L. Yang, S.-H. Zhang, W. Wang, J.-J. Guo, Q. P. Huang, R.-X. Zhao, C.-L. Zhang, and G. Muller (2014). Polyhedron 74, 49.CrossRefGoogle Scholar
  24. 24.
    J. Yang, G. D. Li, J. J. Cao, Q. Yue, G. H. Li, and J. S. Chen (2007). Chem. Eur. J. 13, 3248.CrossRefGoogle Scholar
  25. 25.
    M. Dinca, A. F. Yu, and J. R. Long (2006). J. Am. Chem. Soc. 128, 8904.CrossRefGoogle Scholar
  26. 26.
    D. Li, T. Wu, X. P. Zhou, R. Zhou, and X. C. Huang (2005). Angew. Chem. Int. Ed. 44, 4175.CrossRefGoogle Scholar
  27. 27.
    R.-X. Zhao, H. Hai, G. Li, H.-Y. Zhang, Q. P. Huang, S.-H. Zhang, and H.-P. Li (2014). J. Cluster Sci.. doi: 10.1007/s10876-014-0750-0.Google Scholar
  28. 28.
    S. H. Zhang, L. F. Ma, H. H. Zou, Y. G. Wang, H. Liang, and M. H. Zeng (2011). Dalton Trans. 40, 11402.CrossRefGoogle Scholar
  29. 29.
    S. H. Zhang, R. X. Zhao, H. P. Li, C. M. Ge, Q. P. Huang, and H. H. Zou (2014). J. Solid State Chem. 216, 30.CrossRefGoogle Scholar
  30. 30.
    G. Li, W. Wang, S. H. Zhang, H. Y. Zhang, and F. Y. Chen (2014). J. Cluster Sci.. doi: 10.1007/s10876-014-0758-5.Google Scholar
  31. 31.
    R. A. Reynolds III, W. O. Yu, W. R. Dunham, and D. Coucouvanis (1996). Inorg. Chem. 35, 2721.CrossRefGoogle Scholar
  32. 32.
    S. H. Zhang, N. Li, C. M. Ge, C. Feng, and L. F. Ma (2011). Dalton Trans. 40, 3000.CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick (2008). Acta Cryst. A64, 112.CrossRefGoogle Scholar
  34. 34.
    S.-H. Zhang, C.-L. Lan, and Y.-M. Jiang (2004). Chin. J. Struct. Chem. 23, (8), 878.Google Scholar
  35. 35.
    H.-F. Xu, S.-H. Zhang, Y.-M. Jiang, X.-X. Zhong, and F. Gao (2004). Chin. J. Struct. Chem. 23, (7), 808.Google Scholar
  36. 36.
    Z. Shi, G. H. Li, L. Wang, L. Gao, X. B. Chen, J. Hua, and S. H. Feng (2004). Cryst. Grow. & Des. 4, (1), 25.CrossRefGoogle Scholar
  37. 37.
    L.-M. Zheng, X. Q. Wang, Y. S. Wang, and A. J. Jacobson (2001). J. Mater. Chem. 11, 1100.CrossRefGoogle Scholar
  38. 38.
    X.-M. Chen, Y.-X. Tong, and T. C. W. Mak (1994). Inorg. Chem. 33, (20), 4586.CrossRefGoogle Scholar
  39. 39.
    D. V. Soldatov, P. Tinnemans, G. D. Enright, C. I. Ratcliffe, P. R. Diamente, and J. A. Ripmeester (2003). Chem. Mater. 15, 3826.CrossRefGoogle Scholar
  40. 40.
    S. L. Zheng and X. M. Chen (2004). Aust. J. Chem. 57, 703.CrossRefGoogle Scholar
  41. 41.
    B. Xiao, H. W. Hou, and Y. T. Fan (2009). J. Coord. Chem. 62, 1827.CrossRefGoogle Scholar
  42. 42.
    M. Shebl (2014). Spectrochim. Acta A. 117, 127.CrossRefGoogle Scholar
  43. 43.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed (John Wiley and Sons, New York, 1997).Google Scholar
  44. 44.
    S. Mishra, S. Daniele, G. Ledoux, E. Jeanneau, and M. F. Joubert (2010). Chem. Commun. 46, 3756.CrossRefGoogle Scholar
  45. 45.
    L. E. Valenti, M. B. Paci, C. P. D. Pauli, and C. E. Giacomelli (2011). Anal. Biochem. 410, 118.CrossRefGoogle Scholar
  46. 46.
    S. H. Zhang, Y. M. Jiang, and X. X. Zhong (2004). Chin. J. Inorg. Chem. 20, 959.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Guangxi Scientific Experiment Center of Ming, Metallurgy and Environment, The Guangxi Talent Highland for Hazardous Waste Disposal IndustrializationGuilin University of TechnologyGuilinPeople’s Republic of China
  2. 2.College of Chemistry and Bioengineering (Guangxi Key Laboratory of Environmental Friendly Electromagnetic Chemistry Function Materials)Guilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations