Journal of Cluster Science

, Volume 26, Issue 3, pp 889–900 | Cite as

Syntheses, Structures and Third-Order Nonlinear Optical Properties of Two-Dimensional Rhombohedral Grid Coordination Polymers: [Cd(imz)3]2(BTC)·0.5H2O and [Cu4(H2O)2(imz)8](BTC)2·7H2O(BTC = 1, 2, 4, 5-benzenetetracarboxylate anion, imz = imidazole)

  • Caixia An
  • Xilan Feng
  • Ning Zhao
  • Ping Liu
  • Tianxi Wang
  • Zhaoxun Lian
Original Paper


Hydrothermal reactions of 1, 2, 4, 5-benzenetetracarboxylic acid (H4BTC) with cadmium acetate and copper acetate in the presence of imidazole (imz) resulted in two new coordination polymers, namely, [Cd(imz)3]2(BTC)·0.5H2O 1, [Cu4(H2O)2(imz)8](BTC)2·7H2O 2. Two compounds have been characterized structurally using single-crystal diffraction, elemental analysis, and FT-IR spectrum. In compound 1, the hexa-coordinated Cd(II) ions are bridged by BTC to form two-dimensional rhombohedral grid sheets. In compound 2, the coordination polyhedrons [CuO4N2] and [CuO3N2] are bridged by BTC to lead to a 2D framework with rectangular-shaped cavities. Two compounds of third-order nonlinear optical (NLO) properties were determined by Z-scan technique in DMSO solution. The results showed that two compounds exhibited strong NLO absorption and strong self-focusing effects. The third-order NLO absorptive coefficients β(MKS) are 5.45 × 10−11 m W−1 for 1 and 9.81 × 10−11 m W−1 for 2. The refractive indexes γ(MKS) are 3.96 × 10−18 m2 W−1 for 1 and 7.60 × 10−18 m2 W−1 for 2. The third-order NLO susceptibility χ(3) are calculated to be 1.25 × 10−11 for 1, 2.32 × 10−11 esu for 2, respectively. These values are larger than those of metal coordination polymers reported.

Graphical Abstract

Two novel two-dimensional transition metal coordination polymers have been reported. Two compounds exhibit strong NLO absorption and strong self-focusing effects. The third-order NLO susceptibility χ(3) are calculated to be 1.25 × 10−11 for 1, 2.32 × 10−11 esu for 2, respectively


Third-order nonlinear optics Z-scan Transition metal Crystal structure Coordination polymer 



The work was financially supported by Natural Science Fund Project of Education Department of Henan Province (Grant Nos.13A150293 and 14A150023).


  1. 1.
    K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, and J. R. Long (2012). Chem. Rev. 112, 724.CrossRefGoogle Scholar
  2. 2.
    H. H. Wu, Q. H. Gong, D. H. Olson, and J. Li (2012). Chem. Rev. 112, 836.CrossRefGoogle Scholar
  3. 3.
    M. Y. Yoon, R. Srirambalaji, and K. Kim (2012). Chem. Rev. 112, 1196.CrossRefGoogle Scholar
  4. 4.
    J. R. Li, J. L. Sculley, and H. C. Zhou (2012). Chem. Rev. 112, 869.CrossRefGoogle Scholar
  5. 5.
    L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp (2012). Chem. Rev. 112, 1105.CrossRefGoogle Scholar
  6. 6.
    W. Zhang and R. G. Xiong (2012). Chem. Rev. 112, 1163.CrossRefGoogle Scholar
  7. 7.
    M. P. Suh, Y. J. Par, T. K. Prasad, and D. W. Lim (2012). Chem. Rev. 112, 782.CrossRefGoogle Scholar
  8. 8.
    Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.CrossRefGoogle Scholar
  9. 9.
    J. P. Zhang, Y. B. Zhang, J. B. Lin, and X. M. Chen (2012). Chem. Rev. 112, 1001.CrossRefGoogle Scholar
  10. 10.
    M. O’Keeffe and O. M. Yaghi (2012). Chem. Rev. 112, 675.CrossRefGoogle Scholar
  11. 11.
    C. Wang, T. Zhang, and W. B. Lin (2012). Chem. Rev. 112, 1084.CrossRefGoogle Scholar
  12. 12.
    N. Stock and S. Biswas (2012). Chem. Rev. 112, 933.CrossRefGoogle Scholar
  13. 13.
    H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi (2013). Science 341, 974.CrossRefGoogle Scholar
  14. 14.
    J. P. Zhou, Q. Peng, Z. H. Wen, G. S. Zeng, Q. J. Xing, and G. G. Guo (2010). Cryst. Growth Des. 10, 2613.CrossRefGoogle Scholar
  15. 15.
    H. W. Hou, Y. L. Wei, Y. L. Song, Y. Zhu, L. K. Li, and Y. T. Fan (2002). J. Mater. Chem. 12, 838.CrossRefGoogle Scholar
  16. 16.
    Y. Y. Niu, Y. L. Song, T. N. Chen, Z. L. Xue, and X. Q. Xin (2001). CrystEngComm. 3, 152.CrossRefGoogle Scholar
  17. 17.
    H. W. Hou, X. R. Meng, Y. L. Song, Y. T. Fan, Y. Zhu, H. J. Lu, C. X. Du, and W. H. Shao (2002). Inorg. Chem. 41, 4068.CrossRefGoogle Scholar
  18. 18.
    B. Sui, W. Zhao, G. H. Ma, T. A. Okamura, J. Fan, Y. Z. Li, S. H. Tang, W. Y. Sun, and N. Ueyama (2004). J. Mater. Chem. 14, 1631.CrossRefGoogle Scholar
  19. 19.
    Y. Wang and L. T. Cheng (1992). J. Phys. Chem. 96, 1530.CrossRefGoogle Scholar
  20. 20.
    H. W. Hou, H. G. Ang, S. G. Ang, Y. T. Fan, M. K. W. Low, W. Ji, and Y. W. Lee (1999). Phys. Chem. Chem. Phys. 1, 3145.CrossRefGoogle Scholar
  21. 21.
    G. M. Sheldrick, G. M(2008), Acta Cryst. A64, 112.Google Scholar
  22. 22.
    Q. Hua, Y. Zhao, G. C. Xu, M. S. Chen, Z. Su, K. Cai, and W. Y. Sun (2010). Cryst. Growth Des. 10, 2553.CrossRefGoogle Scholar
  23. 23.
    Y. J. Mu, G. Han, S. Y. Ji, H. W. Hou, and Y. T. Fan (2011). CrystEngComm. 13, 5943.CrossRefGoogle Scholar
  24. 24.
    B. Tao, H, Xia, C. X. Huang, X. W. Li (2011), Z. Anorg. Allg. Chem. 637, 703.Google Scholar
  25. 25.
    G. H. Cui, C. H. He, C. H. Jiao, J. C. Geng, and V. A. Baltov (2012). CrystEngComm. 13, 4210.CrossRefGoogle Scholar
  26. 26.
    Y. Y. Liu, H. Y. Liu, J. F. Ma, Y. Yang, and J. Yang (2013). CrystEngComm. 15, 1897.CrossRefGoogle Scholar
  27. 27.
    L. Ma, N. Q. Yu, S. S. Chen, and H. Deng (2013). CrystEngComm. 15, 1352.CrossRefGoogle Scholar
  28. 28.
    S. Y. Niu, Y. X. Chi, J. Jin, G. D. Yang, and L. Ye (2006). Struct. Chem. 17, 209.CrossRefGoogle Scholar
  29. 29.
    L. L. Wen, J. B. Zhao, K. L. Lv, K. J. Deng, X. K. Leng, and D. F. Li (2012). Cryst. Growth Des. 12, 1603.CrossRefGoogle Scholar
  30. 30.
    E. C. Yang, B. Ding, Z. Y. Liu, Y. L. Yang, and X. J. Zhao (2012). Cryst. Growth Des. 12, 1185.CrossRefGoogle Scholar
  31. 31.
    M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland (1990). IEEE J. Quantum Electron. 26, 760.CrossRefGoogle Scholar
  32. 32.
    M. S. Bahae, A. A. Said, and E. W. V. Stryland (1989). Opt. Lett. 14, 955.CrossRefGoogle Scholar
  33. 33.
    J. L. Zhou, Q. Y. Chen, Y. Y. Gu, and G. Q. Mei (2005). Transition Met. Chem. 30, 1036.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Caixia An
    • 1
  • Xilan Feng
    • 1
  • Ning Zhao
    • 1
  • Ping Liu
    • 1
  • Tianxi Wang
    • 1
  • Zhaoxun Lian
    • 1
  1. 1.Henan Institute of Science and TechnologySchool of Chemistry and Chemical EngineeringXinxiangPeople’s Republic of China

Personalised recommendations