Skip to main content
Log in

Syntheses, Structures and Third-Order Nonlinear Optical Properties of Two-Dimensional Rhombohedral Grid Coordination Polymers: [Cd(imz)3]2(BTC)·0.5H2O and [Cu4(H2O)2(imz)8](BTC)2·7H2O(BTC = 1, 2, 4, 5-benzenetetracarboxylate anion, imz = imidazole)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hydrothermal reactions of 1, 2, 4, 5-benzenetetracarboxylic acid (H4BTC) with cadmium acetate and copper acetate in the presence of imidazole (imz) resulted in two new coordination polymers, namely, [Cd(imz)3]2(BTC)·0.5H2O 1, [Cu4(H2O)2(imz)8](BTC)2·7H2O 2. Two compounds have been characterized structurally using single-crystal diffraction, elemental analysis, and FT-IR spectrum. In compound 1, the hexa-coordinated Cd(II) ions are bridged by BTC to form two-dimensional rhombohedral grid sheets. In compound 2, the coordination polyhedrons [CuO4N2] and [CuO3N2] are bridged by BTC to lead to a 2D framework with rectangular-shaped cavities. Two compounds of third-order nonlinear optical (NLO) properties were determined by Z-scan technique in DMSO solution. The results showed that two compounds exhibited strong NLO absorption and strong self-focusing effects. The third-order NLO absorptive coefficients β(MKS) are 5.45 × 10−11 m W−1 for 1 and 9.81 × 10−11 m W−1 for 2. The refractive indexes γ(MKS) are 3.96 × 10−18 m2 W−1 for 1 and 7.60 × 10−18 m2 W−1 for 2. The third-order NLO susceptibility χ(3) are calculated to be 1.25 × 10−11 for 1, 2.32 × 10−11 esu for 2, respectively. These values are larger than those of metal coordination polymers reported.

Graphical Abstract

Two novel two-dimensional transition metal coordination polymers have been reported. Two compounds exhibit strong NLO absorption and strong self-focusing effects. The third-order NLO susceptibility χ(3) are calculated to be 1.25 × 10−11 for 1, 2.32 × 10−11 esu for 2, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, and J. R. Long (2012). Chem. Rev. 112, 724.

    Article  CAS  Google Scholar 

  2. H. H. Wu, Q. H. Gong, D. H. Olson, and J. Li (2012). Chem. Rev. 112, 836.

    Article  CAS  Google Scholar 

  3. M. Y. Yoon, R. Srirambalaji, and K. Kim (2012). Chem. Rev. 112, 1196.

    Article  CAS  Google Scholar 

  4. J. R. Li, J. L. Sculley, and H. C. Zhou (2012). Chem. Rev. 112, 869.

    Article  CAS  Google Scholar 

  5. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp (2012). Chem. Rev. 112, 1105.

    Article  CAS  Google Scholar 

  6. W. Zhang and R. G. Xiong (2012). Chem. Rev. 112, 1163.

    Article  CAS  Google Scholar 

  7. M. P. Suh, Y. J. Par, T. K. Prasad, and D. W. Lim (2012). Chem. Rev. 112, 782.

    Article  CAS  Google Scholar 

  8. Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.

    Article  CAS  Google Scholar 

  9. J. P. Zhang, Y. B. Zhang, J. B. Lin, and X. M. Chen (2012). Chem. Rev. 112, 1001.

    Article  CAS  Google Scholar 

  10. M. O’Keeffe and O. M. Yaghi (2012). Chem. Rev. 112, 675.

    Article  Google Scholar 

  11. C. Wang, T. Zhang, and W. B. Lin (2012). Chem. Rev. 112, 1084.

    Article  CAS  Google Scholar 

  12. N. Stock and S. Biswas (2012). Chem. Rev. 112, 933.

    Article  CAS  Google Scholar 

  13. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi (2013). Science 341, 974.

    Article  CAS  Google Scholar 

  14. J. P. Zhou, Q. Peng, Z. H. Wen, G. S. Zeng, Q. J. Xing, and G. G. Guo (2010). Cryst. Growth Des. 10, 2613.

    Article  Google Scholar 

  15. H. W. Hou, Y. L. Wei, Y. L. Song, Y. Zhu, L. K. Li, and Y. T. Fan (2002). J. Mater. Chem. 12, 838.

    Article  CAS  Google Scholar 

  16. Y. Y. Niu, Y. L. Song, T. N. Chen, Z. L. Xue, and X. Q. Xin (2001). CrystEngComm. 3, 152.

    Article  Google Scholar 

  17. H. W. Hou, X. R. Meng, Y. L. Song, Y. T. Fan, Y. Zhu, H. J. Lu, C. X. Du, and W. H. Shao (2002). Inorg. Chem. 41, 4068.

    Article  CAS  Google Scholar 

  18. B. Sui, W. Zhao, G. H. Ma, T. A. Okamura, J. Fan, Y. Z. Li, S. H. Tang, W. Y. Sun, and N. Ueyama (2004). J. Mater. Chem. 14, 1631.

    Article  CAS  Google Scholar 

  19. Y. Wang and L. T. Cheng (1992). J. Phys. Chem. 96, 1530.

    Article  CAS  Google Scholar 

  20. H. W. Hou, H. G. Ang, S. G. Ang, Y. T. Fan, M. K. W. Low, W. Ji, and Y. W. Lee (1999). Phys. Chem. Chem. Phys. 1, 3145.

    Article  CAS  Google Scholar 

  21. G. M. Sheldrick, G. M(2008), Acta Cryst. A64, 112.

  22. Q. Hua, Y. Zhao, G. C. Xu, M. S. Chen, Z. Su, K. Cai, and W. Y. Sun (2010). Cryst. Growth Des. 10, 2553.

    Article  CAS  Google Scholar 

  23. Y. J. Mu, G. Han, S. Y. Ji, H. W. Hou, and Y. T. Fan (2011). CrystEngComm. 13, 5943.

    Article  CAS  Google Scholar 

  24. B. Tao, H, Xia, C. X. Huang, X. W. Li (2011), Z. Anorg. Allg. Chem. 637, 703.

  25. G. H. Cui, C. H. He, C. H. Jiao, J. C. Geng, and V. A. Baltov (2012). CrystEngComm. 13, 4210.

    Article  Google Scholar 

  26. Y. Y. Liu, H. Y. Liu, J. F. Ma, Y. Yang, and J. Yang (2013). CrystEngComm. 15, 1897.

    Article  CAS  Google Scholar 

  27. L. Ma, N. Q. Yu, S. S. Chen, and H. Deng (2013). CrystEngComm. 15, 1352.

    Article  CAS  Google Scholar 

  28. S. Y. Niu, Y. X. Chi, J. Jin, G. D. Yang, and L. Ye (2006). Struct. Chem. 17, 209.

    Article  CAS  Google Scholar 

  29. L. L. Wen, J. B. Zhao, K. L. Lv, K. J. Deng, X. K. Leng, and D. F. Li (2012). Cryst. Growth Des. 12, 1603.

    Article  CAS  Google Scholar 

  30. E. C. Yang, B. Ding, Z. Y. Liu, Y. L. Yang, and X. J. Zhao (2012). Cryst. Growth Des. 12, 1185.

    Article  CAS  Google Scholar 

  31. M. S. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland (1990). IEEE J. Quantum Electron. 26, 760.

    Article  Google Scholar 

  32. M. S. Bahae, A. A. Said, and E. W. V. Stryland (1989). Opt. Lett. 14, 955.

    Article  Google Scholar 

  33. J. L. Zhou, Q. Y. Chen, Y. Y. Gu, and G. Q. Mei (2005). Transition Met. Chem. 30, 1036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Natural Science Fund Project of Education Department of Henan Province (Grant Nos.13A150293 and 14A150023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxun Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Feng, X., Zhao, N. et al. Syntheses, Structures and Third-Order Nonlinear Optical Properties of Two-Dimensional Rhombohedral Grid Coordination Polymers: [Cd(imz)3]2(BTC)·0.5H2O and [Cu4(H2O)2(imz)8](BTC)2·7H2O(BTC = 1, 2, 4, 5-benzenetetracarboxylate anion, imz = imidazole). J Clust Sci 26, 889–900 (2015). https://doi.org/10.1007/s10876-014-0778-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0778-1

Keywords

Navigation