Advertisement

Journal of Cluster Science

, Volume 26, Issue 1, pp 41–51 | Cite as

On the Electronic Structure of Organometallic Palladium Clusters of Medium and Large Size: A Theoretical Study

  • Rémi Marchal
  • Gabriele Manca
  • Éric Furet
  • Samia Kahlal
  • Jean-Yves Saillard
  • Jean-François Halet
Brief Communication

Abstract

Based on density functional calculations on model systems, the electronic structure of medium and large ligated palladium clusters is discussed herein. Among all the studied clusters, the electronic structure of \(\hbox {Pd}_{30}(\hbox {CO})_{26}(\hbox {PR}_3)_{10}\), \(\hbox {Pd}_{69}(\hbox {CO})_{36}(\hbox {PR}_3)_{18}\) and \(\hbox {Pd}_{145}(\hbox {CO})_{56}(\hbox {PR}_3)_{30}\) clusters is analyzed in details. It is shown that the evolution of the band gap can be correlated to the average Pd-Pd bond length rather than n, the nuclearity of the cluster.

Keywords

Density functional calculations Ligated palladium DOS 

Notes

Acknowledgments

The authors are grateful to the French Research National Agency (ANR-08-BLAN-0079-01) for financial support.

Supplementary material

10876_2014_774_MOESM1_ESM.pdf (897 kb)
Supplementary material 1 (pdf 897 KB)

References

  1. 1.
    F. A. Cotton (1964). Inorg. Chem. 3, 1217.CrossRefGoogle Scholar
  2. 2.
    F. A. Cotton (1966). Q. Rev. Chem. Soc. 20, 389.CrossRefGoogle Scholar
  3. 3.
    F. A. Cotton (1969). Acc. Chem. Res. 2, 240.CrossRefGoogle Scholar
  4. 4.
    B. Teo (2014). J. Clust. Sci. 25, 5.CrossRefGoogle Scholar
  5. 5.
    G. Schmid (Ed.), Nanoparticles: From theory to application (Wiley-VCH, Weinheim, 2005).Google Scholar
  6. 6.
    G. Hogarth, S. E. Kabir, and E. Nordlander (2010). Dalton Trans. 39, 6153.CrossRefGoogle Scholar
  7. 7.
    W. J. Parak, L. Manna, F. C. Simmel, D. Gerion, and P. Alivisatos, in G. Schmid (ed.), Nanoparticles: From theory to application (Wiley-VCH, Weinheim, 2005), p. 4.Google Scholar
  8. 8.
    O. Belyakova and Y. Slovokhotov (2003). Russ. Chem. Bull. 52, 2299.CrossRefGoogle Scholar
  9. 9.
    C. Femoni, M. C. Iapalucci, F. Kaswalder, G. Longoni, and S. Zacchini (2006). Coord. Chem. Rev. 250, 1580.CrossRefGoogle Scholar
  10. 10.
    I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). J. Clust. Sci. 25, 115.CrossRefGoogle Scholar
  11. 11.
    E. G. Mednikov and L. F. Dahl (2010). Philos. Trans. R. Soc. A 368, 1301.CrossRefGoogle Scholar
  12. 12.
    E. Mednikov, S. Ivanov, and L. Dahl (2003). Angew. Chem. Int. Ed. 42, 323.CrossRefGoogle Scholar
  13. 13.
    N. T. Tran, M. Kawano, and L. F. Dahl (2001). Dalton Trans. 19, 2731.CrossRefGoogle Scholar
  14. 14.
    E. G. Mednikov and L. F. Dahl (2008). J. Am. Chem. Soc. 130, 14813.CrossRefGoogle Scholar
  15. 15.
    E. G. Mednikov, N. K. Eremenko, Y. L. Slovokhotov, and Y. T. Struchkov (1987). J. Chem. Soc. Chem. Commun. 218.Google Scholar
  16. 16.
    E. Mednikov, S. Ivanov, I. Slovokhotova, and L. Dahl (2005). Angew. Chem. Int. ed. 44, 6848.CrossRefGoogle Scholar
  17. 17.
    N. T. Tran, and L. F. Dahl (2003). Angew. Chem. Int. Ed. 42, 3533.CrossRefGoogle Scholar
  18. 18.
    N. T. Tran, D. R. Powell, and L. F. Dahl (2000). Angew. Chem. Int. Ed. 39, 4121.CrossRefGoogle Scholar
  19. 19.
    G. Kresse and J. Hafner (1993). Phys. Rev. B 47, 558.CrossRefGoogle Scholar
  20. 20.
    G. Kresse and J. Hafner (1994). Phys. Rev. B 49, 14251.CrossRefGoogle Scholar
  21. 21.
    G. Kresse and J. Furthmller (1996). Comput. Mater. Sci. 6, 15.CrossRefGoogle Scholar
  22. 22.
    G. Kresse and J. Furthmller (1996). Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  23. 23.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.CrossRefGoogle Scholar
  25. 25.
    R. Koitz, T. M. Soini, A. Genest, S. B. Trickey, and N. Rösch (2012). J. Chem. Phys. 137, 34102.CrossRefGoogle Scholar
  26. 26.
    R. Marchal, I. V. Yudanov, A. V. Matveev, and N. Rösch (2013). Chem. Phys. Lett. 578, 92.CrossRefGoogle Scholar
  27. 27.
    M. Methfessel and A. T. Paxton (1989). Phys. Rev. B 40, 3616.CrossRefGoogle Scholar
  28. 28.
    P. Nava, M. Sierka, and R. Ahlrichs (2004). Phys. Chem. Chem. Phys. 6, 5338.CrossRefGoogle Scholar
  29. 29.
    F. Weigend and R. Ahlrichs (2010). Philos. Trans. R. Soc. A 368, 1245.CrossRefGoogle Scholar
  30. 30.
    P. Nava, M. Sierka, and R. Ahlrichs (2003). Phys. Chem. Chem. Phys. 5, 3372.CrossRefGoogle Scholar
  31. 31.
    J. P. Perdew (1986). Phys. Rev. B 33, 8822.CrossRefGoogle Scholar
  32. 32.
    J. P. Perdew (1986). Phys. Rev. B 34, 7406.CrossRefGoogle Scholar
  33. 33.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rémi Marchal
    • 1
  • Gabriele Manca
    • 1
  • Éric Furet
    • 1
  • Samia Kahlal
    • 1
  • Jean-Yves Saillard
    • 1
  • Jean-François Halet
    • 1
  1. 1.Institut de Sciences chimiques de RennesUMR 6226 CNRS-Université de Rennes 1Rennes cedexFrance

Personalised recommendations