Advertisement

Journal of Cluster Science

, Volume 25, Issue 2, pp 571–579 | Cite as

Crystal Structures of Three Organically Modified Metal Halides

  • Jin-Jing Zhao
  • Yan-Ning Wang
  • Hong-Li Jia
  • Jie-Hui Yu
  • Ji-Qing Xu
Original Paper

Abstract

Under the hydro(solvo)thermal conditions, the reactions of metal halides with organic N-heterocyclic molecules produced three new organically modified metal halides [tmbp][Cu2Br4] (tmbp2+ = N,N,N′,N′-tetramethyl-4,4′-bipiperidinium) 1, [H2(dmbpp)][Pb2I6] (dmbpp = dimethyl-1,3-bis(4-piperidyl)propane) 2 and [PbI2(bpp)] 3 (bpp = 1,3-bis(4-pyridyl)propane). It is noteworthy that tmbp2+ in compound 1 originated from the in situ alkylation of bp with CH3OH (bp = 4,4′-bipiperidine). The mechanism study indicates that H+ and Br play a key role in the alkylation reaction. X-ray single-crystal diffraction analysis revealed that (i) compounds 1 and 2 are the organically templated halometallates. Both possess the 1D chain structures. The 1D chain of compound 1 can be regarded as a linear arrangement of CuBr4 tetrahedra by sharing the edges, whereas that of compound 2 can be considered as an endless extension of PbI6 octahedra by sharing the faces; (ii) compound 3 is the 1:1 adduct of PbI2 and bpp. The PbI2 chain shows a linear shape. Bpp serves as the connector, propagating the PbI2 chains into a 2D layer network of compound 3.

Graphical Abstract

Keywords

Halometallate Templating agent In situ N-alkylation 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 21271083).

References

  1. 1.
    C. B. Aakeröy, N. R. Champness, and C. Janiak (2010). CrystEngComm 12, 22.CrossRefGoogle Scholar
  2. 2.
    A. B. Corradi, S. Bruckner, M. R. Cramarossa, T. Manfredini, L. Menabue, M. Saladini, A. Saccani, F. Sandrolini, and J. Giusti (1993). Chem. Mater. 5, 90.CrossRefGoogle Scholar
  3. 3.
    A. B. Corradi, A. M. Ferrari, and G. C. Pellacani (1998). Inorg. Chim. Acta 272, 252.CrossRefGoogle Scholar
  4. 4.
    C. E. Costin-Hogan, C. L. Chen, E. Hughes, A. Pickett, R. Valencia, N. P. Rath, and A. M. Beatty (2008). CrystEngComm 10, 1910.CrossRefGoogle Scholar
  5. 5.
    D. B. Mitzi (2001). J. Chem. Soc., Dalton Trans. 1.Google Scholar
  6. 6.
    H. Zhang, X. Wang, K. Zhang, and B. K. Teo (1999). Coord. Chem. Rev. 183, 157.CrossRefGoogle Scholar
  7. 7.
    R. Peng, M. Li, and D. Li (2010). Coord. Chem. Rev. 254, 1.CrossRefGoogle Scholar
  8. 8.
    L. M. Wu, X. T. Wu, and L. Chen (2009). Coord. Chem. Rev. 253, 2787.CrossRefGoogle Scholar
  9. 9.
    S. P. Zhao, and X. M. Ren (2011). Dalton Trans. 40, 8261.CrossRefGoogle Scholar
  10. 10.
    N. Mercier, N. Louvain, and W. Bi (2009). CrystEngComm 11, 720.CrossRefGoogle Scholar
  11. 11.
    P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 3625.CrossRefGoogle Scholar
  12. 12.
    F. D. Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, and P. C. Ford (2006). Inorg. Chem. 45, 10576.CrossRefGoogle Scholar
  13. 13.
    M. Vitale, and P. C. Ford (2001). Coord. Chem. Rev. 219–221, 3.CrossRefGoogle Scholar
  14. 14.
    K. R. Kyle, C. K. Ryu, J. A. DiBenedetto, and P. C. Ford (1991). J. Am. Chem. Soc. 113, 2954.CrossRefGoogle Scholar
  15. 15.
    A. Vega, and J.-Y. Saillard (2004). Inorg. Chem. 43, 4012.CrossRefGoogle Scholar
  16. 16.
    Q. Hou, F. Q. Bai, M. J. Jia, J. Jin, J. H. Yu, and J. Q. Xu (2012). CrystEngComm 14, 4000.CrossRefGoogle Scholar
  17. 17.
    Q. Hou, J. N. Xu, J. H. Yu, T. G. Wang, Q. F. Yang, and J. Q. Xu (2010). J. Solid State Chem. 183, 1561.CrossRefGoogle Scholar
  18. 18.
    Q. Hou, J. J. Zhao, T. Q. Zhao, J. Jin, J. H. Yu, and J. Q. Xu (2011). J. Solid State Chem. 184, 1756.CrossRefGoogle Scholar
  19. 19.
    J. Jin, M. J. Jia, Y. C. Wang, J. H. Yu, Q. F. Yang, and J. Q. Xu (2011). Inorg. Chem. Commun. 14, 1681.CrossRefGoogle Scholar
  20. 20.
    J. H. Yu, Q. Hou, T. G. Wang, X. Zhang, and J. Q. Xu (2007). J. Solid State Chem. 180, 518.CrossRefGoogle Scholar
  21. 21.
    Q. Hou, J. H. Yu, J. N. Xu, Q. F. Yang, and J. Q. Xu (2009). CrystEngComm 11, 2452.CrossRefGoogle Scholar
  22. 22.
    H. L. Jia, G. H. Li, H. Ding, Z. M. Gao, G. Zeng, J. H. Yu, and J. Q. Xu (2013). RSC Adv. 3, 16416.CrossRefGoogle Scholar
  23. 23.
    Q. Hou, J. H. Yu, J. N. Xu, Q. F. Yang, and J. Q. Xu (2009). Inorg. Chim Acta 362, 2802.CrossRefGoogle Scholar
  24. 24.
    J. H. Yu, J. Lu, X. Zhang, L. Ye, Q. Hou, and J. Q. Xu (2006). Inorg. Chem. Commun. 9, 415.CrossRefGoogle Scholar
  25. 25.
    J. H. Yu, L. Ye, B. H. Bi, X. Zhang, Q. Hou, and J. Q. Xu (2007). Inrog. Chim. Acta 360, 1987.CrossRefGoogle Scholar
  26. 26.
    Q. Hou, M. J. Jia, J. J. Zhao, J. Jin, J. H. Yu, and J. Q. Xu (2012). Inorg. Chim Acta 384, 287.CrossRefGoogle Scholar
  27. 27.
    G. M. Sheldrick (2008). Acta Crystallogr., Sect. A 64, 112.CrossRefGoogle Scholar
  28. 28.
    C. H. Hu, and U. Englert (2001). CrystEngComm 3, 91.CrossRefGoogle Scholar
  29. 29.
    C. H. Hu, Q. Li, and U. Englert (2003). CrystEngComm 5, 519.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunChina

Personalised recommendations