Skip to main content
Log in

Physical and Chemical Consequences of Size-Reduction of Gold: Bioresponse and Biodistribution

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The article is dealing with the dependency of physical and chemical properties on size and coating of gold nanoparticles (Au NPs) and their potential in medicine. Full-shell clusters of the type Au55(PR3)12Cl6 are in the focal point due to their special properties. They act as quantum dots at room temperature and their stability is based on the perfect cuboctahedral structure. The bioresponse of the 1.4 nm Au55 clusters is, compared with smaller and larger Au NPs, very special, indicated by high cytotoxicity. It is caused by oxidative stress in cells accompanied by direct interactions with DNA. Biodistribution in Wistar–Kyoto rats differs also characteristically from larger Au NPs. Larger Au NPs, intravenously injected, assemble almost quantitatively in the liver, whereas Au55 clusters distribute over numerous other organs. All comparisons have been carried out by Au species with identical ligand molecules in order to have the same conditions concerning surface behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Schwerdtfeger (ed.), Relativistic Electronic Structure Theory. Part 1. Fundamentals (Elsevier, Amsterdam, 2002).

  2. P. Schwerdtfeger (ed.), Relativistic Electronic StructureTheory. Part 2. Applications (Elsevier, Amsterdam, 2005).

  3. B. A. Hess Relativistic Effects in Heavy-Element Chemistry and Physics, 8th ed (Wiley, New York, 2002).

    Google Scholar 

  4. G. Mie (1908). Ann. Phys. 25, 377.

    Article  CAS  Google Scholar 

  5. M. Faraday (1861). Philos. Trans. R. Soc Lond 151, 183.

    Article  Google Scholar 

  6. G. Schmid (2008). Chem. Soc. Rev. 37, 1909.

    Article  CAS  Google Scholar 

  7. C. E. Briant, K. P. Hall, and D. M. P. Mingos (1984). J. Chem. Soc. Chem. Commun. 290.

  8. M. Schulz-Dobrick, and M. Jansen (2006). Eur. J. Inorg. Chem. 4498.

  9. F. Wen, U. Englert, B. S. Gutrath, and U. Simon (2008). Eur. J. Inorg. Chem. 106.

  10. D. M. P. Mingos (1976). J. Chem. Soc. Dalton Trans. 1163.

  11. D. M. P. Mingos (1996). J. Chem. Soc. Dalton Trans. 561.

  12. B. S. Gutrath, U. Englert, Y. Wang, and U. Simon (2013). Eur. J. Inorg. Chem. doi:10.1002/ejic.201300148.

  13. C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, A. J. Welch (1981). J. Chem. Soc. Chem. Commun. 201.

  14. B. S. Gutrath, I. M. Oppel, O. Presly, I. Beljakov, V. Meded, W. Wenzel, and U. Simon (2013). Angew. Chem. Int. Ed. 52, 3529.

    Article  CAS  Google Scholar 

  15. B. K. Teo, X. Shi, and H. Zhang (1992). J. Am. Chem. Soc. 114, 2743.

    Article  CAS  Google Scholar 

  16. B. A. Smith, J. Z. Zhang, U. Giebel, and G. Schmid (1997). Chem. Phys. Lett. 270, 139.

    Article  CAS  Google Scholar 

  17. H. Häkkinen, in R. L. Johnston and J. Wilcoxon (eds.) Frontiers of Nanoscience. Metal Nanoparticles and Nanoalloys (Elsevier, Amsterdam, 2012), Vol. 3.

  18. Y. Gao, N. Shao, and X. C. Zeng (2008). ACS Nano 7, 1497.

    Article  Google Scholar 

  19. A. Bezryadin, C. Dekker, and G. Schmid (1997). Appl. Phys. Lett. 71, 1273.

    Article  CAS  Google Scholar 

  20. L. F. Chi, M. Hartig, T. Drechsler, T. Schwaak, C. Seidel, H. Fuchs, and G. Schmid (1998). Appl. Phys. A 66, 187.

    Article  Google Scholar 

  21. G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Mayer, G. H. M. Calis, and J. W. A. van der Velden (1981). Chem. Ber. 114, 3634.

    Article  CAS  Google Scholar 

  22. C. E. Briant, B. R. C. Theobald, J. W. White, C. K. Bell, and D. M. P. Mingos (1981). J. Chem. Soc. Chem. Commun. 201.

  23. J. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. I. Beurskens, J. M. M. Smits, and W. P. Bosman (1981). Recueil J. R. Netherl. Chem. Soc. 100, 148.

    Google Scholar 

  24. H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M. G. Garnier, and P. Oelhafen (2002). Science 297, 1533.

    Article  CAS  Google Scholar 

  25. G. Schmid, N. Klein, L. Korste, U. Kreibig, and D. Schönauer (1988). Polyhedron 7, 605.

  26. M. Shilo, T. Reuveni, M. Motiei, and R. Popovtzer (2012). Nanomedicine 7, 257.

    Article  CAS  Google Scholar 

  27. W. O. M. José, A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia (2011). Adv. Mater. 23, H18–H40.

    Article  Google Scholar 

  28. D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon (2007). J. Am. Chem. Soc. 129, 7661.

    Article  CAS  Google Scholar 

  29. R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman (2008). Nano Lett. 8, 4598.

    Article  Google Scholar 

  30. M. Lijowski, S. Caruthers, G. Hu, H. Zhang, M. J. Scott, T. Williams, T. Erpelding, A. H. Schmieder, G. Kiefer, G. Gulyas, P. S. Athey, P. J. Gaffney, S. A. Wickline, and G. M. Lanza (2009). Invest. Radiol. 44, 15.

    Article  CAS  Google Scholar 

  31. N. Chanda, V. Kattumuri, R. Shukla, A. Zambre, K. Katti, A. Upendran, R. R. Kulkarni, P. Kan, G. M. Fent, S. W. Casteel, C. J. Smith, E. Boote, J. D. Robertson, C. Cutler, J. R. Lever, K. V. Katti, and R. Kannan (2010). Proc. Natl. Acad. Sci. 107, 8760.

    Article  CAS  Google Scholar 

  32. B. Aydogan, J. Li, T. Rajh, A. Chaudhary, S. Chmura, C. Pelizzari, C. Wietholt, M. Kurtoglu, and P. Redmond (2010). Mol. Imag. Biol. 12, 463.

    Google Scholar 

  33. J. F. Hainfeld, M. J. O’Connor, F. A. Dilmanian, D. N. Slatkin, D. J. Adams, and H. M. Smilowitz (2011). Br. J. Radiol. 84, 526.

    Article  CAS  Google Scholar 

  34. T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer (2011). Int. J. Nanomed. 6, 2859.

    CAS  Google Scholar 

  35. H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang (2011). Biomaterials 32, 2979.

    Article  CAS  Google Scholar 

  36. M. Xu and L. V. Wang (2006). Rev. Sci. Instrum. 77, 041101.

    Article  Google Scholar 

  37. K. Homan, S. Mallidi, E. Cooley, S. Emilianov, in B. Goins and W. Phillips (eds.) Combined Photoacoustic and Ultrasound Imaging of Metal Nanoparticles In Vivo (Pan Stanford Publishing Pte. Ltd., Austin 2011).

  38. C. Bao, N. Beziere, P. de Pinto, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui (2013). Small 9, 68.

    Article  CAS  Google Scholar 

  39. C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, and Y. Xia (2011). Chem. Soc. Rev. 40, 44.

    Article  CAS  Google Scholar 

  40. M. Homberger and U. Simon (2010). Philos. Trans R. Soc. A 368, 1405.

    Article  CAS  Google Scholar 

  41. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang (2004). Nano Lett. 4, 1689.

    Article  CAS  Google Scholar 

  42. W. Lu, Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oarevsky, V. Wang, and C. Li (2010). Biomaterials 31, 2617.

    Article  CAS  Google Scholar 

  43. S. Y. Emilianov, P.-C. Li, and M. O’Donell (2009). Phys. Today 62, 34.

    Article  Google Scholar 

  44. A. A. Oraevsky, in L. V. Wang (ed.), Gold and Silver Nanoparticles as Contrast Agents for Optoacoustic Imaging (Taylor and Francis, New York, 2009).

  45. T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Science 289, 1757.

    Article  CAS  Google Scholar 

  46. Y. W. C. Cao, R. Jin, and C. A. Mirkin (2002). Science 297, 1536.

    Article  CAS  Google Scholar 

  47. S. J. Stoeva, J.-S. Lee, C. S. Thaxton, and C. A. Mirkin (2006). Angew. Chem. Int. Ed. 45, 3303.

    Article  CAS  Google Scholar 

  48. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed (2006). Photochem. Photobiol. 82, 412.

    Article  CAS  Google Scholar 

  49. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed (2006). J. Am. Chem. Soc. 128, 2115.

    Article  CAS  Google Scholar 

  50. X. Huang, I. H. El-Sayed, and M. A. El-Sayed (2010). Methods Mol. Biol. 624, 343.

    Article  CAS  Google Scholar 

  51. C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jaques, and J. J. L. Carson (2009). Nanotechnology 20, 195102.

    Article  Google Scholar 

  52. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed (2007). Lasers Surg. Med. 39, 747.

    Article  Google Scholar 

  53. H. C. Sang (2005). Phys. Med. Biol. 50, N163.

    Article  Google Scholar 

  54. T. Kong, J. Zeng, X. Wang, X. Yang, J. Yang, S. McQuarrie, A. McEwan, and W. Roa (2008). Small 4, 1537.

    Article  CAS  Google Scholar 

  55. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky (2006). Lasers Surg. Med. 38, 631.

    Article  Google Scholar 

  56. R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, and J. L. West (2008). J. Neurooncol. 86, 165.

    Article  Google Scholar 

  57. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak (2008). Chem. Soc. Rev. 37, 1896.

    Article  CAS  Google Scholar 

  58. A. S. Angelatos, B. Radt, and F. Caruso (2006). J. Phys. Chem. B 6, 110.

    Google Scholar 

  59. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, W. J. Parak, H. Möhwald, and G. B. Sukhorukov (2005). Nano Lett. 5, 1371.

    Article  CAS  Google Scholar 

  60. A. G. Skirtach, A. M. Javier, O. Kreft, K. Köhler, A. P. Alberola, H. Möhwald, W. J. Parak, and G. B. Sukhorukov (2006). Angew. Chem. Int. Ed. 45, 4612.

    Article  CAS  Google Scholar 

  61. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin (2003). Biophys. J. 84, 4023.

    Article  CAS  Google Scholar 

  62. A. Elbakry, E.-C. Wurster, A. Zaky, R. Liebl, E. Schindler, P. Bauer-Kreisel, T. Blunk, R. Rachel, A. Goepfrich, and M. Breunig (2012). Small 8, 3847.

    Article  CAS  Google Scholar 

  63. C. Rosman, S. Pierrat, A. Henkel, M. Tarantola, D. Schneider, E. Sunnick, A. Janshoff, and C. Sönnichsen (2012). Small 8, 3683.

    Article  CAS  Google Scholar 

  64. Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, and H. Kuhn (2003). Angew. Chem. Int. Ed. 42, 2853.

    Article  CAS  Google Scholar 

  65. A. Kumar, M. Pattarrine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, and M. Sastry (2001). Adv. Mater. 13, 341.

    Article  CAS  Google Scholar 

  66. G. Schmid, M. Bäumle, and N. Beyer (2000). Angew. Chem. Int. Ed. 39, 181.

    Article  CAS  Google Scholar 

  67. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt (2005). Small 1, 325.

    Article  CAS  Google Scholar 

  68. C. J. Murphy, A. M. Cole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter (2008). Acc. Chem. Res. 41, 1721.

    Article  CAS  Google Scholar 

  69. G. Schmid (2012). Encycl. Inorg. Bioinorg. Chem.. doi:10.1002/9781119951438.eibc0284.pub2.

    Google Scholar 

  70. S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong (2011). Toxicol. Appl. Pharmacol. 236, 16.

    Google Scholar 

  71. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt (2005). Small 1, 325.

    Article  CAS  Google Scholar 

  72. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter (2008). Acc. Chem. Res. 41, 1721.

    Article  CAS  Google Scholar 

  73. J. J. Li, D. Hartono, C.-N. Ong, B.-H. Bay, and L.-Y. I. Yung (2010). Biomaterials 31, 5996.

    Article  CAS  Google Scholar 

  74. H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone (2010). Crit. Rev. Toxicol. 40, 328.

    Article  CAS  Google Scholar 

  75. M. Tsoli, H. Kuhn, W. Brandau, H. Esche, and G. Schmid (2005). Small 1, 841.

    Article  CAS  Google Scholar 

  76. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent (2007). Small 3, 1941.

    Article  CAS  Google Scholar 

  77. M. Turner, V. B. Golvoko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert (2008). Nature 454, 981.

    Article  CAS  Google Scholar 

  78. Y. Pei, N. Shao, Y. Gao, and X. C. Zeng (2009). ACS Nano 4.

  79. Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, and W. Jahnen-Dechent (2009). Small 5, 2067.

    Article  CAS  Google Scholar 

  80. S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, and W. G. Kreyling (2011). Eur. J. Pharm. Biopharm. 77, 407.

    Article  CAS  Google Scholar 

  81. M. Semmler-Behnke, W. G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, and W. Brandau (2008). Small 4, 2108.

    Article  CAS  Google Scholar 

  82. C. Schleh, M. Semmler-Behnke, J. Lipka, A. Wenk, S. Hirn, M. Schäffler, G. Schmid, U. Simon, and W. G. Kreyling (2012). Nanotoxicology 6, 36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, G. Physical and Chemical Consequences of Size-Reduction of Gold: Bioresponse and Biodistribution. J Clust Sci 25, 29–49 (2014). https://doi.org/10.1007/s10876-013-0619-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0619-7

Keywords

Navigation