Journal of Cluster Science

, Volume 25, Issue 1, pp 29–49 | Cite as

Physical and Chemical Consequences of Size-Reduction of Gold: Bioresponse and Biodistribution

  • Günter Schmid
Review Paper


The article is dealing with the dependency of physical and chemical properties on size and coating of gold nanoparticles (Au NPs) and their potential in medicine. Full-shell clusters of the type Au55(PR3)12Cl6 are in the focal point due to their special properties. They act as quantum dots at room temperature and their stability is based on the perfect cuboctahedral structure. The bioresponse of the 1.4 nm Au55 clusters is, compared with smaller and larger Au NPs, very special, indicated by high cytotoxicity. It is caused by oxidative stress in cells accompanied by direct interactions with DNA. Biodistribution in Wistar–Kyoto rats differs also characteristically from larger Au NPs. Larger Au NPs, intravenously injected, assemble almost quantitatively in the liver, whereas Au55 clusters distribute over numerous other organs. All comparisons have been carried out by Au species with identical ligand molecules in order to have the same conditions concerning surface behaviour.


Gold nanoparticles Quantum dot Cytotoxicity Bioresponse Biodistribution 


  1. 1.
    P. Schwerdtfeger (ed.), Relativistic Electronic Structure Theory. Part 1. Fundamentals (Elsevier, Amsterdam, 2002).Google Scholar
  2. 2.
    P. Schwerdtfeger (ed.), Relativistic Electronic StructureTheory. Part 2. Applications (Elsevier, Amsterdam, 2005).Google Scholar
  3. 3.
    B. A. Hess Relativistic Effects in Heavy-Element Chemistry and Physics, 8th ed (Wiley, New York, 2002).Google Scholar
  4. 4.
    G. Mie (1908). Ann. Phys. 25, 377.CrossRefGoogle Scholar
  5. 5.
    M. Faraday (1861). Philos. Trans. R. Soc Lond 151, 183.CrossRefGoogle Scholar
  6. 6.
    G. Schmid (2008). Chem. Soc. Rev. 37, 1909.CrossRefGoogle Scholar
  7. 7.
    C. E. Briant, K. P. Hall, and D. M. P. Mingos (1984). J. Chem. Soc. Chem. Commun. 290.Google Scholar
  8. 8.
    M. Schulz-Dobrick, and M. Jansen (2006). Eur. J. Inorg. Chem. 4498.Google Scholar
  9. 9.
    F. Wen, U. Englert, B. S. Gutrath, and U. Simon (2008). Eur. J. Inorg. Chem. 106.Google Scholar
  10. 10.
    D. M. P. Mingos (1976). J. Chem. Soc. Dalton Trans. 1163.Google Scholar
  11. 11.
    D. M. P. Mingos (1996). J. Chem. Soc. Dalton Trans. 561.Google Scholar
  12. 12.
    B. S. Gutrath, U. Englert, Y. Wang, and U. Simon (2013). Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300148.
  13. 13.
    C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, A. J. Welch (1981). J. Chem. Soc. Chem. Commun. 201.Google Scholar
  14. 14.
    B. S. Gutrath, I. M. Oppel, O. Presly, I. Beljakov, V. Meded, W. Wenzel, and U. Simon (2013). Angew. Chem. Int. Ed. 52, 3529.CrossRefGoogle Scholar
  15. 15.
    B. K. Teo, X. Shi, and H. Zhang (1992). J. Am. Chem. Soc. 114, 2743.CrossRefGoogle Scholar
  16. 16.
    B. A. Smith, J. Z. Zhang, U. Giebel, and G. Schmid (1997). Chem. Phys. Lett. 270, 139.CrossRefGoogle Scholar
  17. 17.
    H. Häkkinen, in R. L. Johnston and J. Wilcoxon (eds.) Frontiers of Nanoscience. Metal Nanoparticles and Nanoalloys (Elsevier, Amsterdam, 2012), Vol. 3.Google Scholar
  18. 18.
    Y. Gao, N. Shao, and X. C. Zeng (2008). ACS Nano 7, 1497.CrossRefGoogle Scholar
  19. 19.
    A. Bezryadin, C. Dekker, and G. Schmid (1997). Appl. Phys. Lett. 71, 1273.CrossRefGoogle Scholar
  20. 20.
    L. F. Chi, M. Hartig, T. Drechsler, T. Schwaak, C. Seidel, H. Fuchs, and G. Schmid (1998). Appl. Phys. A 66, 187.CrossRefGoogle Scholar
  21. 21.
    G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Mayer, G. H. M. Calis, and J. W. A. van der Velden (1981). Chem. Ber. 114, 3634.CrossRefGoogle Scholar
  22. 22.
    C. E. Briant, B. R. C. Theobald, J. W. White, C. K. Bell, and D. M. P. Mingos (1981). J. Chem. Soc. Chem. Commun. 201.Google Scholar
  23. 23.
    J. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. I. Beurskens, J. M. M. Smits, and W. P. Bosman (1981). Recueil J. R. Netherl. Chem. Soc. 100, 148.Google Scholar
  24. 24.
    H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M. G. Garnier, and P. Oelhafen (2002). Science 297, 1533.CrossRefGoogle Scholar
  25. 25.
    G. Schmid, N. Klein, L. Korste, U. Kreibig, and D. Schönauer (1988). Polyhedron 7, 605.Google Scholar
  26. 26.
    M. Shilo, T. Reuveni, M. Motiei, and R. Popovtzer (2012). Nanomedicine 7, 257.CrossRefGoogle Scholar
  27. 27.
    W. O. M. José, A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia (2011). Adv. Mater. 23, H18–H40.CrossRefGoogle Scholar
  28. 28.
    D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon (2007). J. Am. Chem. Soc. 129, 7661.CrossRefGoogle Scholar
  29. 29.
    R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman (2008). Nano Lett. 8, 4598.CrossRefGoogle Scholar
  30. 30.
    M. Lijowski, S. Caruthers, G. Hu, H. Zhang, M. J. Scott, T. Williams, T. Erpelding, A. H. Schmieder, G. Kiefer, G. Gulyas, P. S. Athey, P. J. Gaffney, S. A. Wickline, and G. M. Lanza (2009). Invest. Radiol. 44, 15.CrossRefGoogle Scholar
  31. 31.
    N. Chanda, V. Kattumuri, R. Shukla, A. Zambre, K. Katti, A. Upendran, R. R. Kulkarni, P. Kan, G. M. Fent, S. W. Casteel, C. J. Smith, E. Boote, J. D. Robertson, C. Cutler, J. R. Lever, K. V. Katti, and R. Kannan (2010). Proc. Natl. Acad. Sci. 107, 8760.CrossRefGoogle Scholar
  32. 32.
    B. Aydogan, J. Li, T. Rajh, A. Chaudhary, S. Chmura, C. Pelizzari, C. Wietholt, M. Kurtoglu, and P. Redmond (2010). Mol. Imag. Biol. 12, 463.Google Scholar
  33. 33.
    J. F. Hainfeld, M. J. O’Connor, F. A. Dilmanian, D. N. Slatkin, D. J. Adams, and H. M. Smilowitz (2011). Br. J. Radiol. 84, 526.CrossRefGoogle Scholar
  34. 34.
    T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer (2011). Int. J. Nanomed. 6, 2859.Google Scholar
  35. 35.
    H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang (2011). Biomaterials 32, 2979.CrossRefGoogle Scholar
  36. 36.
    M. Xu and L. V. Wang (2006). Rev. Sci. Instrum. 77, 041101.CrossRefGoogle Scholar
  37. 37.
    K. Homan, S. Mallidi, E. Cooley, S. Emilianov, in B. Goins and W. Phillips (eds.) Combined Photoacoustic and Ultrasound Imaging of Metal Nanoparticles In Vivo (Pan Stanford Publishing Pte. Ltd., Austin 2011).Google Scholar
  38. 38.
    C. Bao, N. Beziere, P. de Pinto, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui (2013). Small 9, 68.CrossRefGoogle Scholar
  39. 39.
    C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, and Y. Xia (2011). Chem. Soc. Rev. 40, 44.CrossRefGoogle Scholar
  40. 40.
    M. Homberger and U. Simon (2010). Philos. Trans R. Soc. A 368, 1405.CrossRefGoogle Scholar
  41. 41.
    Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang (2004). Nano Lett. 4, 1689.CrossRefGoogle Scholar
  42. 42.
    W. Lu, Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oarevsky, V. Wang, and C. Li (2010). Biomaterials 31, 2617.CrossRefGoogle Scholar
  43. 43.
    S. Y. Emilianov, P.-C. Li, and M. O’Donell (2009). Phys. Today 62, 34.CrossRefGoogle Scholar
  44. 44.
    A. A. Oraevsky, in L. V. Wang (ed.), Gold and Silver Nanoparticles as Contrast Agents for Optoacoustic Imaging (Taylor and Francis, New York, 2009).Google Scholar
  45. 45.
    T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Science 289, 1757.CrossRefGoogle Scholar
  46. 46.
    Y. W. C. Cao, R. Jin, and C. A. Mirkin (2002). Science 297, 1536.CrossRefGoogle Scholar
  47. 47.
    S. J. Stoeva, J.-S. Lee, C. S. Thaxton, and C. A. Mirkin (2006). Angew. Chem. Int. Ed. 45, 3303.CrossRefGoogle Scholar
  48. 48.
    X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed (2006). Photochem. Photobiol. 82, 412.CrossRefGoogle Scholar
  49. 49.
    X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed (2006). J. Am. Chem. Soc. 128, 2115.CrossRefGoogle Scholar
  50. 50.
    X. Huang, I. H. El-Sayed, and M. A. El-Sayed (2010). Methods Mol. Biol. 624, 343.CrossRefGoogle Scholar
  51. 51.
    C. L. Didychuk, P. Ephrat, A. Chamson-Reig, S. L. Jaques, and J. J. L. Carson (2009). Nanotechnology 20, 195102.CrossRefGoogle Scholar
  52. 52.
    X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed (2007). Lasers Surg. Med. 39, 747.CrossRefGoogle Scholar
  53. 53.
    H. C. Sang (2005). Phys. Med. Biol. 50, N163.CrossRefGoogle Scholar
  54. 54.
    T. Kong, J. Zeng, X. Wang, X. Yang, J. Yang, S. McQuarrie, A. McEwan, and W. Roa (2008). Small 4, 1537.CrossRefGoogle Scholar
  55. 55.
    D. O. Lapotko, E. Lukianova, and A. A. Oraevsky (2006). Lasers Surg. Med. 38, 631.CrossRefGoogle Scholar
  56. 56.
    R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, and J. L. West (2008). J. Neurooncol. 86, 165.CrossRefGoogle Scholar
  57. 57.
    R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak (2008). Chem. Soc. Rev. 37, 1896.CrossRefGoogle Scholar
  58. 58.
    A. S. Angelatos, B. Radt, and F. Caruso (2006). J. Phys. Chem. B 6, 110.Google Scholar
  59. 59.
    A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, W. J. Parak, H. Möhwald, and G. B. Sukhorukov (2005). Nano Lett. 5, 1371.CrossRefGoogle Scholar
  60. 60.
    A. G. Skirtach, A. M. Javier, O. Kreft, K. Köhler, A. P. Alberola, H. Möhwald, W. J. Parak, and G. B. Sukhorukov (2006). Angew. Chem. Int. Ed. 45, 4612.CrossRefGoogle Scholar
  61. 61.
    C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin (2003). Biophys. J. 84, 4023.CrossRefGoogle Scholar
  62. 62.
    A. Elbakry, E.-C. Wurster, A. Zaky, R. Liebl, E. Schindler, P. Bauer-Kreisel, T. Blunk, R. Rachel, A. Goepfrich, and M. Breunig (2012). Small 8, 3847.CrossRefGoogle Scholar
  63. 63.
    C. Rosman, S. Pierrat, A. Henkel, M. Tarantola, D. Schneider, E. Sunnick, A. Janshoff, and C. Sönnichsen (2012). Small 8, 3683.CrossRefGoogle Scholar
  64. 64.
    Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, and H. Kuhn (2003). Angew. Chem. Int. Ed. 42, 2853.CrossRefGoogle Scholar
  65. 65.
    A. Kumar, M. Pattarrine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, and M. Sastry (2001). Adv. Mater. 13, 341.CrossRefGoogle Scholar
  66. 66.
    G. Schmid, M. Bäumle, and N. Beyer (2000). Angew. Chem. Int. Ed. 39, 181.CrossRefGoogle Scholar
  67. 67.
    E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt (2005). Small 1, 325.CrossRefGoogle Scholar
  68. 68.
    C. J. Murphy, A. M. Cole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter (2008). Acc. Chem. Res. 41, 1721.CrossRefGoogle Scholar
  69. 69.
    G. Schmid (2012). Encycl. Inorg. Bioinorg. Chem.. doi: 10.1002/9781119951438.eibc0284.pub2.Google Scholar
  70. 70.
    S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong (2011). Toxicol. Appl. Pharmacol. 236, 16.Google Scholar
  71. 71.
    E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt (2005). Small 1, 325.CrossRefGoogle Scholar
  72. 72.
    C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter (2008). Acc. Chem. Res. 41, 1721.CrossRefGoogle Scholar
  73. 73.
    J. J. Li, D. Hartono, C.-N. Ong, B.-H. Bay, and L.-Y. I. Yung (2010). Biomaterials 31, 5996.CrossRefGoogle Scholar
  74. 74.
    H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone (2010). Crit. Rev. Toxicol. 40, 328.CrossRefGoogle Scholar
  75. 75.
    M. Tsoli, H. Kuhn, W. Brandau, H. Esche, and G. Schmid (2005). Small 1, 841.CrossRefGoogle Scholar
  76. 76.
    Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent (2007). Small 3, 1941.CrossRefGoogle Scholar
  77. 77.
    M. Turner, V. B. Golvoko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson, and R. M. Lambert (2008). Nature 454, 981.CrossRefGoogle Scholar
  78. 78.
    Y. Pei, N. Shao, Y. Gao, and X. C. Zeng (2009). ACS Nano 4.Google Scholar
  79. 79.
    Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, and W. Jahnen-Dechent (2009). Small 5, 2067.CrossRefGoogle Scholar
  80. 80.
    S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, and W. G. Kreyling (2011). Eur. J. Pharm. Biopharm. 77, 407.CrossRefGoogle Scholar
  81. 81.
    M. Semmler-Behnke, W. G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, and W. Brandau (2008). Small 4, 2108.CrossRefGoogle Scholar
  82. 82.
    C. Schleh, M. Semmler-Behnke, J. Lipka, A. Wenk, S. Hirn, M. Schäffler, G. Schmid, U. Simon, and W. G. Kreyling (2012). Nanotoxicology 6, 36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Chemistry, Institute of Inorganic ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations