Journal of Cluster Science

, Volume 23, Issue 2, pp 491–502 | Cite as

Facile Microwave Approach for Synthesis of Copper–Indium Sulfide Nanoparticles and Study of Their Behavior in Solar Cell

  • Mohammad Yousefi
  • Mohammad Sabet
  • Masoud Salavati-Niasari
  • S. Mostafa Hosseinpour-Mashkani
Original Paper


CuInS2 (CIS) nanoparticles (nps) were synthesized via a microwave approach by adding eight sulfur sources with a new copper precursor, [bis(acetylacetonato)copper(II)]; [Cu(acac)2]. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible and photoluminescence spectroscopy. Band gap of as-synthesized nps was 2.1 eV that showed about 0.55 eV blue shift in comparison to its bulk type. As observed in other semiconductor systems, the optical absorption blue shift is associated with quantum confinement effects. Thin film of CIS was prepared by doctor’s blade technique and solar cell made from indium transparent oxide/CIS/CdS/Pt layers. I–V characterization was investigated for this cell and fill factor, open-circuit voltage (V oc) and short-circuit current (I sc) were achieved.


CuInS2 Nanoparticles Solar cell Microwave Inorganic precursor 



Authors are grateful to Council of Islamic Azad University, Shahre Rey Branch, Tehran and University of Kashan for providing financial support to undertake this work.


  1. 1.
    J. Palm, V. Probst, and F. H. Karg (2004). Sol. Energy 77, 757.CrossRefGoogle Scholar
  2. 2.
    M. Powalla, D. Hariskos, E. Lotter, M. Oertel, J. Springer, D. Stellbogen, B. Dimmler, and R. Schäffler (2003). Thin Solid Films 431–432, 523.CrossRefGoogle Scholar
  3. 3.
    J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone (1972). Phys. Rev. B 5, 5003.CrossRefGoogle Scholar
  4. 4.
    N. Guezmir, J. Ouerfelli, and S. Belgacem (2006). Mater. Chem. Phys. 96, 116.CrossRefGoogle Scholar
  5. 5.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi (2000). Annu. Rev. Mater. Sci. 30, 545.CrossRefGoogle Scholar
  6. 6.
    K. Liu, C.-L. Ho, S. Aouba, Y.-Q. Zhao, Z.-H. Lu, S. Petrov, N. Coombs, P. Dube, H. E. Ruda, W.-Y. Wong, and I. Manners (2008). Angew. Chem. Int. Ed. 47, 1255.CrossRefGoogle Scholar
  7. 7.
    Q. Dong, G. Li, C.-L. Ho, M. Faisal, C.-W. Leung, P. W.-T. Pong, K. Liu, B.-Z. Tang, I. Manners, and W.-Y. Wong (2012). Adv. Mater. 24, 1034.CrossRefGoogle Scholar
  8. 8.
    S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp (2004). J. Phys. Chem. B 108, 12429.CrossRefGoogle Scholar
  9. 9.
    H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda (2006). Chem. Mater. 18, 3330.CrossRefGoogle Scholar
  10. 10.
    J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T. R. Fletcher, M. Williams, C. Wang, and M. G. Norton (2006). Nano Lett. 6, 1218.CrossRefGoogle Scholar
  11. 11.
    T. Kino, T. Kuzuya, K. Itoh, K. Sumiyama, T. Wakamatsu, and M. Ichidate (2008). Mater. Trans. 49, 435.CrossRefGoogle Scholar
  12. 12.
    J. H. Park, M. Afzaal, M. Kemmler, P. O’Brien, D. J. Otway, J. Raftery, and J. Waters (2003). J. Mater. Chem. 13, 1942.CrossRefGoogle Scholar
  13. 13.
    I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, and A. Goossens (2005). Thin Solid Films 480–481, 82.CrossRefGoogle Scholar
  14. 14.
    M. Kanzari and B. Rezig (2000). Semicond. Sci. Technol. 15, 335.CrossRefGoogle Scholar
  15. 15.
    K. Muller, Y. Burkov, and D. Schemeiher (2005). Thin Solid Films 480–481, 291.CrossRefGoogle Scholar
  16. 16.
    J. S. Gardner, E. Shurdha, C. Wang, L. D. Lau, R. G. Rodriguez, and J. J. Pak (2008). J. Nanopart. Res. 10, 633.CrossRefGoogle Scholar
  17. 17.
    A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier, H. Amenitsch, F. Hofer, C. Kappe, and G. Trimm (2011). Inorg. Chem. 50, 193.CrossRefGoogle Scholar
  18. 18.
    C. Sun, J. S. Gardner, E. Shurdha, K. R. Margulieux, R. D. Westover, L. Lau, G. Long, C. Bajracharya, C. Wang, A. Thurber, A. Punnoose, R. G. Rodriguez, and J. J. Pak (2009). J. Nanomater. 2009, 1–7. (Article ID: 748567).Google Scholar
  19. 19.
    S. Bandyopadhyaya, S. Chaudhuri, and A. K. Pal (2000). Sol. Energy Mater. Sol. Cells 60, 323.CrossRefGoogle Scholar
  20. 20.
    M. Gossla, H. Metzner, J. Conrad, U. Geyer, and T. Hahn (1995). Thin Solid Films 268, 39.CrossRefGoogle Scholar
  21. 21.
    K. I. Kondo, H. Sano, S. Nakamura, K. Sato, and H. Hirasawa (1997). Sol. Energy Mater. Sol. Cells 49, 327.CrossRefGoogle Scholar
  22. 22.
    J. A. Hollingsworth, K. K. Banger, M. H. C. Jin, J. D. Harris, J. E. Cowen, E. W. Bohannan, and J. A. Switzer (2003). Thin Solid Films 431–432, 63.CrossRefGoogle Scholar
  23. 23.
    M. Ortega-Lopez and A. Morales-Acevedo (1998). Thin Solid Films 330, 96.CrossRefGoogle Scholar
  24. 24.
    A. N. Tiwari, K. Pandya, and L. Chopra (1985). Thin Solid Films 130, 217.CrossRefGoogle Scholar
  25. 25.
    S. Mahmoud and A. H. Eid (1997). Fizika A 4, 171.Google Scholar
  26. 26.
    S. Lindroos, A. Arnold, and M. Leskela (2000). Appl. Surf. Sci. 158, 75.CrossRefGoogle Scholar
  27. 27.
    S. Kuranouchi and T. Nakazawa (1998). Sol. Energy Mater. Sol. Cells 50, 31.CrossRefGoogle Scholar
  28. 28.
    R. Bacewicz, W. Gebicki, and J. Filipowiz (1994). J. Phys. Condens. Matter 6, L777.CrossRefGoogle Scholar
  29. 29.
    K. Yoshino, T. Ikari, S. Shirakata, H. Miyake, and K. Hiramatsu (2001). Appl. Phys. Lett. 78, 742.CrossRefGoogle Scholar
  30. 30.
    S. Shirakata and H. Miyake (2003). J. Phys. Chem. Solids 64, 2021.CrossRefGoogle Scholar
  31. 31.
    T. Ding, J. Zhang, S. Long, and J. Zhu (2003). Microelectron. Eng. 66, 46.CrossRefGoogle Scholar
  32. 32.
    F.-T. Kong, S.-Y. Dai, and K.-J. Wang (2007). Adv. Optoelectron. 2007, 1–13. (Article ID: 75384).Google Scholar
  33. 33.
    I. Konovalov (2004). Thin Solid Films 451–452, 413.CrossRefGoogle Scholar
  34. 34.
    A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwar (2004). Prog. Photovolt. Res. Appl. 12, 93.CrossRefGoogle Scholar
  35. 35.
    R. Jenkins and R. L. Snyder Chemical Analysis: Introduction to X-Ray Powder Diffractometry (Wiley, New York, 1996), p. 90.Google Scholar
  36. 36.
    D. Michael, P. Mingos, and D. R. Baghurst (1991). Chem. Soc. Rev. 20, 1.CrossRefGoogle Scholar
  37. 37.
    J. P. Tierney and P. Lidstrom (eds.) Microwave Assisted Organic Synthesis (Wiley India, New Delhi, 2009).Google Scholar
  38. 38.
    B. L. Hayes Microwave Synthesis: Chemistry at the Speed of Light (CEM Publishing, Matthews, 2002).Google Scholar
  39. 39.
    P. Guha, D. Das, A. B. Maity, D. Gangulia, and S. Chaudhuri (2003). Sol. Energy Mater. Sol. Cells 80, 115.CrossRefGoogle Scholar
  40. 40.
    L. Brus (1984). J. Chem. Phys. 80, 4403.CrossRefGoogle Scholar
  41. 41.
    E. Cordoncillo, P. Escribano, G. Monrós, M. A. Tena, V. Orera, and J. Carda (1995). J. Solid State Chem. 118, 1.CrossRefGoogle Scholar
  42. 42.
    Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, and K. Sumiyama (2008). Chem. Phys. Lett. 466, 176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad Yousefi
    • 1
  • Mohammad Sabet
    • 2
  • Masoud Salavati-Niasari
    • 2
  • S. Mostafa Hosseinpour-Mashkani
    • 3
  1. 1.Islamic Azad UniversityTehranIslamic Republic of Iran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  3. 3.Center for Nanoscience and Technology, ISJawaharlal Nehru Technological University HyderabadHyderabadIndia

Personalised recommendations