Skip to main content
Log in

Facile Microwave Approach for Synthesis of Copper–Indium Sulfide Nanoparticles and Study of Their Behavior in Solar Cell

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

CuInS2 (CIS) nanoparticles (nps) were synthesized via a microwave approach by adding eight sulfur sources with a new copper precursor, [bis(acetylacetonato)copper(II)]; [Cu(acac)2]. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible and photoluminescence spectroscopy. Band gap of as-synthesized nps was 2.1 eV that showed about 0.55 eV blue shift in comparison to its bulk type. As observed in other semiconductor systems, the optical absorption blue shift is associated with quantum confinement effects. Thin film of CIS was prepared by doctor’s blade technique and solar cell made from indium transparent oxide/CIS/CdS/Pt layers. I–V characterization was investigated for this cell and fill factor, open-circuit voltage (V oc) and short-circuit current (I sc) were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Palm, V. Probst, and F. H. Karg (2004). Sol. Energy 77, 757.

    Article  CAS  Google Scholar 

  2. M. Powalla, D. Hariskos, E. Lotter, M. Oertel, J. Springer, D. Stellbogen, B. Dimmler, and R. Schäffler (2003). Thin Solid Films 431–432, 523.

    Article  Google Scholar 

  3. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone (1972). Phys. Rev. B 5, 5003.

    Article  Google Scholar 

  4. N. Guezmir, J. Ouerfelli, and S. Belgacem (2006). Mater. Chem. Phys. 96, 116.

    Article  CAS  Google Scholar 

  5. C. B. Murray, C. R. Kagan, and M. G. Bawendi (2000). Annu. Rev. Mater. Sci. 30, 545.

    Article  CAS  Google Scholar 

  6. K. Liu, C.-L. Ho, S. Aouba, Y.-Q. Zhao, Z.-H. Lu, S. Petrov, N. Coombs, P. Dube, H. E. Ruda, W.-Y. Wong, and I. Manners (2008). Angew. Chem. Int. Ed. 47, 1255.

    Article  CAS  Google Scholar 

  7. Q. Dong, G. Li, C.-L. Ho, M. Faisal, C.-W. Leung, P. W.-T. Pong, K. Liu, B.-Z. Tang, I. Manners, and W.-Y. Wong (2012). Adv. Mater. 24, 1034.

    Article  CAS  Google Scholar 

  8. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp (2004). J. Phys. Chem. B 108, 12429.

    Article  CAS  Google Scholar 

  9. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda (2006). Chem. Mater. 18, 3330.

    Article  CAS  Google Scholar 

  10. J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T. R. Fletcher, M. Williams, C. Wang, and M. G. Norton (2006). Nano Lett. 6, 1218.

    Article  CAS  Google Scholar 

  11. T. Kino, T. Kuzuya, K. Itoh, K. Sumiyama, T. Wakamatsu, and M. Ichidate (2008). Mater. Trans. 49, 435.

    Article  CAS  Google Scholar 

  12. J. H. Park, M. Afzaal, M. Kemmler, P. O’Brien, D. J. Otway, J. Raftery, and J. Waters (2003). J. Mater. Chem. 13, 1942.

    Article  CAS  Google Scholar 

  13. I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, and A. Goossens (2005). Thin Solid Films 480–481, 82.

    Article  Google Scholar 

  14. M. Kanzari and B. Rezig (2000). Semicond. Sci. Technol. 15, 335.

    Article  CAS  Google Scholar 

  15. K. Muller, Y. Burkov, and D. Schemeiher (2005). Thin Solid Films 480–481, 291.

    Article  Google Scholar 

  16. J. S. Gardner, E. Shurdha, C. Wang, L. D. Lau, R. G. Rodriguez, and J. J. Pak (2008). J. Nanopart. Res. 10, 633.

    Article  CAS  Google Scholar 

  17. A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier, H. Amenitsch, F. Hofer, C. Kappe, and G. Trimm (2011). Inorg. Chem. 50, 193.

    Article  CAS  Google Scholar 

  18. C. Sun, J. S. Gardner, E. Shurdha, K. R. Margulieux, R. D. Westover, L. Lau, G. Long, C. Bajracharya, C. Wang, A. Thurber, A. Punnoose, R. G. Rodriguez, and J. J. Pak (2009). J. Nanomater. 2009, 1–7. (Article ID: 748567).

  19. S. Bandyopadhyaya, S. Chaudhuri, and A. K. Pal (2000). Sol. Energy Mater. Sol. Cells 60, 323.

    Article  CAS  Google Scholar 

  20. M. Gossla, H. Metzner, J. Conrad, U. Geyer, and T. Hahn (1995). Thin Solid Films 268, 39.

    Article  CAS  Google Scholar 

  21. K. I. Kondo, H. Sano, S. Nakamura, K. Sato, and H. Hirasawa (1997). Sol. Energy Mater. Sol. Cells 49, 327.

    Article  CAS  Google Scholar 

  22. J. A. Hollingsworth, K. K. Banger, M. H. C. Jin, J. D. Harris, J. E. Cowen, E. W. Bohannan, and J. A. Switzer (2003). Thin Solid Films 431–432, 63.

    Article  Google Scholar 

  23. M. Ortega-Lopez and A. Morales-Acevedo (1998). Thin Solid Films 330, 96.

    Article  CAS  Google Scholar 

  24. A. N. Tiwari, K. Pandya, and L. Chopra (1985). Thin Solid Films 130, 217.

    Article  CAS  Google Scholar 

  25. S. Mahmoud and A. H. Eid (1997). Fizika A 4, 171.

    Google Scholar 

  26. S. Lindroos, A. Arnold, and M. Leskela (2000). Appl. Surf. Sci. 158, 75.

    Article  CAS  Google Scholar 

  27. S. Kuranouchi and T. Nakazawa (1998). Sol. Energy Mater. Sol. Cells 50, 31.

    Article  CAS  Google Scholar 

  28. R. Bacewicz, W. Gebicki, and J. Filipowiz (1994). J. Phys. Condens. Matter 6, L777.

    Article  CAS  Google Scholar 

  29. K. Yoshino, T. Ikari, S. Shirakata, H. Miyake, and K. Hiramatsu (2001). Appl. Phys. Lett. 78, 742.

    Article  CAS  Google Scholar 

  30. S. Shirakata and H. Miyake (2003). J. Phys. Chem. Solids 64, 2021.

    Article  CAS  Google Scholar 

  31. T. Ding, J. Zhang, S. Long, and J. Zhu (2003). Microelectron. Eng. 66, 46.

    Article  CAS  Google Scholar 

  32. F.-T. Kong, S.-Y. Dai, and K.-J. Wang (2007). Adv. Optoelectron. 2007, 1–13. (Article ID: 75384).

  33. I. Konovalov (2004). Thin Solid Films 451–452, 413.

    Article  Google Scholar 

  34. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwar (2004). Prog. Photovolt. Res. Appl. 12, 93.

    Article  CAS  Google Scholar 

  35. R. Jenkins and R. L. Snyder Chemical Analysis: Introduction to X-Ray Powder Diffractometry (Wiley, New York, 1996), p. 90.

    Google Scholar 

  36. D. Michael, P. Mingos, and D. R. Baghurst (1991). Chem. Soc. Rev. 20, 1.

    Article  Google Scholar 

  37. J. P. Tierney and P. Lidstrom (eds.) Microwave Assisted Organic Synthesis (Wiley India, New Delhi, 2009).

    Google Scholar 

  38. B. L. Hayes Microwave Synthesis: Chemistry at the Speed of Light (CEM Publishing, Matthews, 2002).

    Google Scholar 

  39. P. Guha, D. Das, A. B. Maity, D. Gangulia, and S. Chaudhuri (2003). Sol. Energy Mater. Sol. Cells 80, 115.

    Article  CAS  Google Scholar 

  40. L. Brus (1984). J. Chem. Phys. 80, 4403.

    Article  CAS  Google Scholar 

  41. E. Cordoncillo, P. Escribano, G. Monrós, M. A. Tena, V. Orera, and J. Carda (1995). J. Solid State Chem. 118, 1.

    Article  CAS  Google Scholar 

  42. Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, and K. Sumiyama (2008). Chem. Phys. Lett. 466, 176.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Council of Islamic Azad University, Shahre Rey Branch, Tehran and University of Kashan for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefi, M., Sabet, M., Salavati-Niasari, M. et al. Facile Microwave Approach for Synthesis of Copper–Indium Sulfide Nanoparticles and Study of Their Behavior in Solar Cell. J Clust Sci 23, 491–502 (2012). https://doi.org/10.1007/s10876-012-0460-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0460-4

Keywords

Navigation