Skip to main content

Advertisement

Log in

Efficient Decomposition of Organic Pollutants Over In2O3/TiO2 Nanocomposite Photocatalyst Under Visible Light Irradiation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The heterojunction structures of In2O3/TiO2, exhibiting visible light photocatalytic efficiency, has been synthesized by utilizing maleic acid as an organic linker to combine In2O3 and Degussa P25 (TiO2) nanoparticles. The prepared nanocomposite has been characterized by FESEM, TEM, XRD and UV–Visible reflectance spectra. The photocatalytic efficiency of the composite photocatalyst has been investigated based on the decomposition of 2-propanol (IP) in gas phase and 1,4-dichlorobenzene (DCB) in aqueous phase under visible light (λ ≥ 420 nm) irradiation. The results reveal that the In2O3/TiO2 composite photocatalyst with 7 wt% In2O3 demonstrated 6.3 times of efficiency in evolving CO2 from gaseous IP and 8.7 times of efficiency in removing aqueous DCB in compare with Degussa P25. In this In2O3/TiO2 composite system, TiO2 seems to be the principal photocatalyst whereas the function of In2O3 is to sensitize TiO2 by absorbing visible light (λ ≥ 420 nm). The extraordinary high photocatalytic efficiency of this composite In2O3/TiO2 under visible light has been explained on the basis of relative energy band positions of the component semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Honda and A. Fujishima (1972). Nature 238, 37.

    Article  Google Scholar 

  2. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69.

    Article  CAS  Google Scholar 

  3. A. Hagfeldt and M. Grätzel (1995). Chem. Rev. 95, 49.

    Article  CAS  Google Scholar 

  4. S. Sakthivel and H. Kisch (2003). ChemPhysChem 4, 487.

    Article  CAS  Google Scholar 

  5. A. A. Ashkarran, M. Kavianipour, S. M. Aghigh, S. A. A. Afshar, S. Saviz, and A. I. Zad (2010). J. Clust. Sci. 21, 753.

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.

    Article  CAS  Google Scholar 

  7. S. Klosek and D. Raftery (2001). J. Phys. Chem. B 105, 2815.

    Article  CAS  Google Scholar 

  8. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr (2002). Science 297, 2243.

    Article  CAS  Google Scholar 

  9. S. Sakthivel and H. Kisch (2003). Angew. Chem. Int. Ed. 42, 4908.

    Article  CAS  Google Scholar 

  10. H. Irie, Y. Watanabe, and K. Hashimoto (2003). J. Phys. Chem. B 107, 5483.

    Article  CAS  Google Scholar 

  11. G. Zhao, S. Liu, Q. Lu, M. Shi, and L. Song (2011). J. Clust. Sci. doi:10.1007/s10876-011-0403-5.

  12. F. Amano, A. Yamakata, K. Nogami, M. Osawa, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 17650.

    Article  CAS  Google Scholar 

  13. J. Tang, Z. Zou, and J. Ye (2004). Angew. Chem. Int. Ed. 43, 4463.

    Article  CAS  Google Scholar 

  14. Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, and W. I. Lee (2009). J. Phys. Chem. C 113, 19179.

    Article  CAS  Google Scholar 

  15. B. Gao, Y. J. Kim, A. K. Chakraborty, and W. I. Lee (2008). Appl. Catal. B 83, 202.

    Article  CAS  Google Scholar 

  16. S. B. Rawal, A. K. Chakraborty, and W. I. Lee (2009). Bull. Korean Chem. Soc. 30, 2613.

    Article  CAS  Google Scholar 

  17. S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, and W. I. Lee (2009). J. Catal. 262, 144.

    Article  CAS  Google Scholar 

  18. Q. P. Wu, D. Z. Li, L. Wu, J. Wang, X. Z. Fu, and X. X. Wang (2006). J. Mater. Chem. 16, 1116.

    Article  CAS  Google Scholar 

  19. Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, and J. Yu (2009). J. Phys. Chem. C 113, 4612.

    Article  CAS  Google Scholar 

  20. J. Lv, T. Kako, Z. Zou, and J. Ye (2009). Appl. Phys. Lett. 95, 032107.

    Article  Google Scholar 

  21. V. Rodríguez-Gonzalez, A. Moreno-Rodríguez, M. May, F. Tzompantzi, and R. Gómez (2008). J. Photochem. Photobiol. A 193, 266.

    Article  Google Scholar 

  22. H. Cheng, B. Huang, Y. Dai, X. Qin, and X. Zhang (2010). Langmuir 26, 6618.

    Article  CAS  Google Scholar 

  23. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, and M.-H. Whangbo (2009). Inorg. Chem. 48, 10697.

    Article  CAS  Google Scholar 

  24. L. Spanhel, H. Weller, and A. Henglein (1987). J. Am. Chem. Soc. 109, 6632.

    Article  CAS  Google Scholar 

  25. D. Liu and P. V. Kamat (1993). J. Electroanal. Chem. 347, 451.

    Article  CAS  Google Scholar 

  26. H. Zhang, S. Ouyang, Z. Li, L. Liu, T. Yu, J. Ye, and Z. Zou (2006). J. Phys. Chem. Solids 67, 2501.

    Article  CAS  Google Scholar 

  27. A. D. Paola, L. Palmisano, A. M. Venezia, and V. Augugliaro (1999). J. Phys. Chem. B 103, 8236.

    Article  Google Scholar 

  28. K. R. Gopidas, M. Bohorquez, and P. V. Kamat (1990). J. Phys. Chem. 94, 6435.

    Article  CAS  Google Scholar 

  29. L. C. Schumacher, S. Mamiche-Afara, and M. J. Dignam (1986). J. Electrochem. Soc. 133, 716.

    Article  CAS  Google Scholar 

  30. S. Sato (1988). J. Photochem. Photobiol. A 45, 361.

    Article  CAS  Google Scholar 

  31. F. Quarto, C. Sunseri, S. Piazza, and M. Romano (1997). J. Phys. Chem. B 101, 2519.

    Article  Google Scholar 

  32. O. N. Srivastava, R. K. Karn, and M. Misra (2000). Int. J. Hydrog. Energy 25, 495.

    Article  CAS  Google Scholar 

  33. C. G. Granqvist (1993). Appl. Phys. A 57, 19.

    Article  Google Scholar 

  34. K. G. Gopchandran, B. Joseph, J. T. Abraham, P. Koshy, and V. K. Vaidyan (1997). Vacuum 86, 547.

    Article  Google Scholar 

  35. H. Yamaura, J. Tamaki, K. Moriya, N. Miura, and N. Yamazoe (1996). J. Electrochem. Soc. 143, L36.

    Article  CAS  Google Scholar 

  36. D. Shchukin, S. Poznyak, A. Kulak, and P. Pichat (2004). J. Photochem. Photobiol. A 162, 423.

    Article  CAS  Google Scholar 

  37. D. F. Wang, Z. G. Zou, and J. H. Ye (2005). Chem. Mater. 17, 3255.

    Article  CAS  Google Scholar 

  38. Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do (2000). J. Catal. 191, 192.

    Article  CAS  Google Scholar 

  39. Y. Ohko, K. Hashimoto, and A. Fujishima (1997). J. Phys. Chem. A 101, 8057.

    Article  CAS  Google Scholar 

  40. Y. Xu and M. A. A. Schoonen (2000). Am. Miner. 85, 543.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia, Bangladesh and Evonik Degussa GmbH for Degussa P25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A.K., Kebede, M.A. Efficient Decomposition of Organic Pollutants Over In2O3/TiO2 Nanocomposite Photocatalyst Under Visible Light Irradiation. J Clust Sci 23, 247–257 (2012). https://doi.org/10.1007/s10876-011-0425-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0425-z

Keywords

Navigation