Advertisement

Journal of Cluster Science

, Volume 23, Issue 2, pp 247–257 | Cite as

Efficient Decomposition of Organic Pollutants Over In2O3/TiO2 Nanocomposite Photocatalyst Under Visible Light Irradiation

  • Ashok Kumar Chakraborty
  • Mesfin Abayneh Kebede
Original Paper

Abstract

The heterojunction structures of In2O3/TiO2, exhibiting visible light photocatalytic efficiency, has been synthesized by utilizing maleic acid as an organic linker to combine In2O3 and Degussa P25 (TiO2) nanoparticles. The prepared nanocomposite has been characterized by FESEM, TEM, XRD and UV–Visible reflectance spectra. The photocatalytic efficiency of the composite photocatalyst has been investigated based on the decomposition of 2-propanol (IP) in gas phase and 1,4-dichlorobenzene (DCB) in aqueous phase under visible light (λ ≥ 420 nm) irradiation. The results reveal that the In2O3/TiO2 composite photocatalyst with 7 wt% In2O3 demonstrated 6.3 times of efficiency in evolving CO2 from gaseous IP and 8.7 times of efficiency in removing aqueous DCB in compare with Degussa P25. In this In2O3/TiO2 composite system, TiO2 seems to be the principal photocatalyst whereas the function of In2O3 is to sensitize TiO2 by absorbing visible light (λ ≥ 420 nm). The extraordinary high photocatalytic efficiency of this composite In2O3/TiO2 under visible light has been explained on the basis of relative energy band positions of the component semiconductors.

Keywords

Nanocomposite Photocatalyst Visible light Organic pollutants CO2 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia, Bangladesh and Evonik Degussa GmbH for Degussa P25.

References

  1. 1.
    K. Honda and A. Fujishima (1972). Nature 238, 37.CrossRefGoogle Scholar
  2. 2.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69.CrossRefGoogle Scholar
  3. 3.
    A. Hagfeldt and M. Grätzel (1995). Chem. Rev. 95, 49.CrossRefGoogle Scholar
  4. 4.
    S. Sakthivel and H. Kisch (2003). ChemPhysChem 4, 487.CrossRefGoogle Scholar
  5. 5.
    A. A. Ashkarran, M. Kavianipour, S. M. Aghigh, S. A. A. Afshar, S. Saviz, and A. I. Zad (2010). J. Clust. Sci. 21, 753.CrossRefGoogle Scholar
  6. 6.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.CrossRefGoogle Scholar
  7. 7.
    S. Klosek and D. Raftery (2001). J. Phys. Chem. B 105, 2815.CrossRefGoogle Scholar
  8. 8.
    S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr (2002). Science 297, 2243.CrossRefGoogle Scholar
  9. 9.
    S. Sakthivel and H. Kisch (2003). Angew. Chem. Int. Ed. 42, 4908.CrossRefGoogle Scholar
  10. 10.
    H. Irie, Y. Watanabe, and K. Hashimoto (2003). J. Phys. Chem. B 107, 5483.CrossRefGoogle Scholar
  11. 11.
    G. Zhao, S. Liu, Q. Lu, M. Shi, and L. Song (2011). J. Clust. Sci. doi: 10.1007/s10876-011-0403-5.
  12. 12.
    F. Amano, A. Yamakata, K. Nogami, M. Osawa, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 17650.CrossRefGoogle Scholar
  13. 13.
    J. Tang, Z. Zou, and J. Ye (2004). Angew. Chem. Int. Ed. 43, 4463.CrossRefGoogle Scholar
  14. 14.
    Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, and W. I. Lee (2009). J. Phys. Chem. C 113, 19179.CrossRefGoogle Scholar
  15. 15.
    B. Gao, Y. J. Kim, A. K. Chakraborty, and W. I. Lee (2008). Appl. Catal. B 83, 202.CrossRefGoogle Scholar
  16. 16.
    S. B. Rawal, A. K. Chakraborty, and W. I. Lee (2009). Bull. Korean Chem. Soc. 30, 2613.CrossRefGoogle Scholar
  17. 17.
    S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, and W. I. Lee (2009). J. Catal. 262, 144.CrossRefGoogle Scholar
  18. 18.
    Q. P. Wu, D. Z. Li, L. Wu, J. Wang, X. Z. Fu, and X. X. Wang (2006). J. Mater. Chem. 16, 1116.CrossRefGoogle Scholar
  19. 19.
    Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, and J. Yu (2009). J. Phys. Chem. C 113, 4612.CrossRefGoogle Scholar
  20. 20.
    J. Lv, T. Kako, Z. Zou, and J. Ye (2009). Appl. Phys. Lett. 95, 032107.CrossRefGoogle Scholar
  21. 21.
    V. Rodríguez-Gonzalez, A. Moreno-Rodríguez, M. May, F. Tzompantzi, and R. Gómez (2008). J. Photochem. Photobiol. A 193, 266.CrossRefGoogle Scholar
  22. 22.
    H. Cheng, B. Huang, Y. Dai, X. Qin, and X. Zhang (2010). Langmuir 26, 6618.CrossRefGoogle Scholar
  23. 23.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, and M.-H. Whangbo (2009). Inorg. Chem. 48, 10697.CrossRefGoogle Scholar
  24. 24.
    L. Spanhel, H. Weller, and A. Henglein (1987). J. Am. Chem. Soc. 109, 6632.CrossRefGoogle Scholar
  25. 25.
    D. Liu and P. V. Kamat (1993). J. Electroanal. Chem. 347, 451.CrossRefGoogle Scholar
  26. 26.
    H. Zhang, S. Ouyang, Z. Li, L. Liu, T. Yu, J. Ye, and Z. Zou (2006). J. Phys. Chem. Solids 67, 2501.CrossRefGoogle Scholar
  27. 27.
    A. D. Paola, L. Palmisano, A. M. Venezia, and V. Augugliaro (1999). J. Phys. Chem. B 103, 8236.CrossRefGoogle Scholar
  28. 28.
    K. R. Gopidas, M. Bohorquez, and P. V. Kamat (1990). J. Phys. Chem. 94, 6435.CrossRefGoogle Scholar
  29. 29.
    L. C. Schumacher, S. Mamiche-Afara, and M. J. Dignam (1986). J. Electrochem. Soc. 133, 716.CrossRefGoogle Scholar
  30. 30.
    S. Sato (1988). J. Photochem. Photobiol. A 45, 361.CrossRefGoogle Scholar
  31. 31.
    F. Quarto, C. Sunseri, S. Piazza, and M. Romano (1997). J. Phys. Chem. B 101, 2519.CrossRefGoogle Scholar
  32. 32.
    O. N. Srivastava, R. K. Karn, and M. Misra (2000). Int. J. Hydrog. Energy 25, 495.CrossRefGoogle Scholar
  33. 33.
    C. G. Granqvist (1993). Appl. Phys. A 57, 19.CrossRefGoogle Scholar
  34. 34.
    K. G. Gopchandran, B. Joseph, J. T. Abraham, P. Koshy, and V. K. Vaidyan (1997). Vacuum 86, 547.CrossRefGoogle Scholar
  35. 35.
    H. Yamaura, J. Tamaki, K. Moriya, N. Miura, and N. Yamazoe (1996). J. Electrochem. Soc. 143, L36.CrossRefGoogle Scholar
  36. 36.
    D. Shchukin, S. Poznyak, A. Kulak, and P. Pichat (2004). J. Photochem. Photobiol. A 162, 423.CrossRefGoogle Scholar
  37. 37.
    D. F. Wang, Z. G. Zou, and J. H. Ye (2005). Chem. Mater. 17, 3255.CrossRefGoogle Scholar
  38. 38.
    Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do (2000). J. Catal. 191, 192.CrossRefGoogle Scholar
  39. 39.
    Y. Ohko, K. Hashimoto, and A. Fujishima (1997). J. Phys. Chem. A 101, 8057.CrossRefGoogle Scholar
  40. 40.
    Y. Xu and M. A. A. Schoonen (2000). Am. Miner. 85, 543.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ashok Kumar Chakraborty
    • 1
  • Mesfin Abayneh Kebede
    • 2
  1. 1.Department of Applied Chemistry and Chemical TechnologyIslamic UniversityKushtiaBangladesh
  2. 2.Materials Science and ManufacturingCouncil for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations