Skip to main content
Log in

A Systemic DFT Study on Several 5d-Electron Element Dimers: Hf2, Ta2, Re2, W2, and Hg2

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Eleven kinds of density functionals in conjunction with three different basis sets are employed to investigate the homonuclear 5d-electron dimers: Hf2, Ta2, Re2, W2 and Hg2. The computed bond lengths, vibrational frequencies and dissociation energies of these molecules are used to compare with available experimental data to find the appropriate combination of functional and basis set. The different functionals and basis sets favor different ground electronic state for Hf2 and Re2 molecules, indicating that these two dimers are sensitive to the functionals used. The molecular properties of Hg2 dimer depend strongly on both functionals and basis sets used. It is found that the BP86 and PBEPBE functionals are generally successful in describing the 5d-electron dimers. For the ground states of these dimers, the bonding patterns are determined by natural bond orbital (NBO) analysis. Natural electron configurations show that the 6s and 5d orbitals in the bonding atoms hybrid with each other for the studied dimers except for Hg2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. D. Morse (1986). Chem. Rev. 86, 1049.

    Article  CAS  Google Scholar 

  2. J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431.

    Article  CAS  Google Scholar 

  3. J. G. Du, X. Y. Sun, and H. Y. Wang (2008). Int. J. Quantum Chem. 108, 1505.

    Article  CAS  Google Scholar 

  4. C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III (2000). J. Chem. Phys. 113, 690.

    Article  CAS  Google Scholar 

  5. S. Yanagisawa, T. Tsuneda, and K. Hirao (2000). J. Chem. Phys. 112, 545.

    Article  CAS  Google Scholar 

  6. G. L. Cutsev and C. W. Bauschlicher Jr. (2003). J. Phys. Chem. A. 107, 4755.

    Article  Google Scholar 

  7. Z. J. Wu (2004). Chem. Phys. Lett. 383, 251.

    Article  CAS  Google Scholar 

  8. Z. J. Wu, B. Han, Z. W. Dai, and P. C. Jin (2005). Chem. Phys. Lett. 403, 367.

    Article  CAS  Google Scholar 

  9. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.

    Article  CAS  Google Scholar 

  10. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 78, 4066.

    Article  CAS  Google Scholar 

  11. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 1736.

  12. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.

    Article  CAS  Google Scholar 

  13. J. E. Carpenter and F. Weinhold (1988). J. Mol. Struct. (THEOCHEM) 169, 41.

    Article  Google Scholar 

  14. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  15. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  16. L. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785.

    Article  CAS  Google Scholar 

  17. J. P. Perdew (1986). Phys. Rev. B. 33, 8822.

    Article  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.

    Article  CAS  Google Scholar 

  19. A. D. Becke (1988). Phys. Rev. A. 38, 3098.

    Article  CAS  Google Scholar 

  20. J. P. Perdew and Y. Wang (1992). Phys. Rev. B. 45, 13244.

    Article  Google Scholar 

  21. P. M. W. Gill (1996). Mol. Phys. 89, 433.

    Article  CAS  Google Scholar 

  22. C. Adamo and V. Barone (1998). J. Chem. Phys. 108, 664.

    Article  CAS  Google Scholar 

  23. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  24. N. C. Handy and A. J. Cohen (2001). Mol. Phys. 99, 403.

    Article  CAS  Google Scholar 

  25. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.

    Article  Google Scholar 

  26. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.

    Article  CAS  Google Scholar 

  27. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  28. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  29. W. Stevens, H. Basch, and J. Krauss (1984). J. Chem. Phys. 81, 6026.

    Article  Google Scholar 

  30. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien (1992). Can. J. Chem. 70, 612.

    Article  CAS  Google Scholar 

  31. T. R. Cundari and W. J. Stevens (1993). J. Chem. Phys. 98, 5555.

    Article  CAS  Google Scholar 

  32. D. Andvae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta. 77, 123.

    Article  Google Scholar 

  33. J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408.

    Article  CAS  Google Scholar 

  34. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  Google Scholar 

  35. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  36. B. Delley (2000). J. Chem. Phys. 113, 7756, (Dmol3 is available as part in Materials Studio).

    Google Scholar 

  37. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Gaussian 03, Revision B 02 (Gaussian, Inc., Pittsburgh PA, 2003).

    Google Scholar 

  38. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1993). J. Phys. Chem. 97, 9263.

    Article  CAS  Google Scholar 

  39. J. L. Jules and J. R. Lombardi (2003). J. Phys. Chem. A. 107, 1268.

    Article  CAS  Google Scholar 

  40. C. W. Bauschlicher Jr. (2008). Chem. Phys. Lett. 462, 183.

    Article  CAS  Google Scholar 

  41. Z. Hu, B. Shen, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 96, 8757.

    Article  CAS  Google Scholar 

  42. M. W. Heaven, G. M. Stewart, M. A. Buntine, and G. F. Metha (2000). J. Phys. Chem. A. 104, 3308.

    Article  CAS  Google Scholar 

  43. W. Fa, C. F. Luo, and J. M. Dong (2006). J. Chem. Phys. 125, 114305.

    Article  Google Scholar 

  44. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 97, 8811.

    Article  CAS  Google Scholar 

  45. Z. J. Wu (2003). Chem. Phys. Lett. 370, 510.

    Article  CAS  Google Scholar 

  46. J. G. Du, X. Y. Sun, D. Q. Meng, P. C. Zhang, and G. Jiang (2009). J. Chem. Phys. 131, 044313.

    Article  Google Scholar 

  47. H. S. Cheng and L. S. Wang (1996). Phys. Rev. Lett. 77, 51.

    Article  CAS  Google Scholar 

  48. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1994). J. Chem. Phys. 101, 95.

    Article  CAS  Google Scholar 

  49. D. G. Leopold, T. M. Miller, and W. C. Lineberger (1986). J. Am. Chem. Soc. 108, 178.

    Article  CAS  Google Scholar 

  50. R. D. Van Zee, S. C. Blankespoor, and T. S. Zwier (1988). J. Chem. Phys. 88, 4650.

    Article  Google Scholar 

  51. J. Koperskl, J. B. Atkinson, and L. Krause (1994). Chem. Phys. Lett. 219, 161.

    Article  Google Scholar 

  52. K. Hilpert (1982). J. Chem. Phys. 77, 1425.

    Article  CAS  Google Scholar 

  53. D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009). J. Chem. Phys. 130, 164108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Du, J., Zhang, P. et al. A Systemic DFT Study on Several 5d-Electron Element Dimers: Hf2, Ta2, Re2, W2, and Hg2 . J Clust Sci 21, 619–636 (2010). https://doi.org/10.1007/s10876-010-0295-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0295-9

Keywords

Navigation