Advertisement

Journal of Cluster Science

, Volume 21, Issue 4, pp 619–636 | Cite as

A Systemic DFT Study on Several 5d-Electron Element Dimers: Hf2, Ta2, Re2, W2, and Hg2

  • Xiyuan Sun
  • Jiguang Du
  • Pengcheng Zhang
  • Gang Jiang
Original Paper

Abstract

Eleven kinds of density functionals in conjunction with three different basis sets are employed to investigate the homonuclear 5d-electron dimers: Hf2, Ta2, Re2, W2 and Hg2. The computed bond lengths, vibrational frequencies and dissociation energies of these molecules are used to compare with available experimental data to find the appropriate combination of functional and basis set. The different functionals and basis sets favor different ground electronic state for Hf2 and Re2 molecules, indicating that these two dimers are sensitive to the functionals used. The molecular properties of Hg2 dimer depend strongly on both functionals and basis sets used. It is found that the BP86 and PBEPBE functionals are generally successful in describing the 5d-electron dimers. For the ground states of these dimers, the bonding patterns are determined by natural bond orbital (NBO) analysis. Natural electron configurations show that the 6s and 5d orbitals in the bonding atoms hybrid with each other for the studied dimers except for Hg2.

Keywords

5d-electron dimers DFT methods Valence basis sets Bonding patterns 

References

  1. 1.
    M. D. Morse (1986). Chem. Rev. 86, 1049.CrossRefGoogle Scholar
  2. 2.
    J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431.CrossRefGoogle Scholar
  3. 3.
    J. G. Du, X. Y. Sun, and H. Y. Wang (2008). Int. J. Quantum Chem. 108, 1505.CrossRefGoogle Scholar
  4. 4.
    C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III (2000). J. Chem. Phys. 113, 690.CrossRefGoogle Scholar
  5. 5.
    S. Yanagisawa, T. Tsuneda, and K. Hirao (2000). J. Chem. Phys. 112, 545.CrossRefGoogle Scholar
  6. 6.
    G. L. Cutsev and C. W. Bauschlicher Jr. (2003). J. Phys. Chem. A. 107, 4755.CrossRefGoogle Scholar
  7. 7.
    Z. J. Wu (2004). Chem. Phys. Lett. 383, 251.CrossRefGoogle Scholar
  8. 8.
    Z. J. Wu, B. Han, Z. W. Dai, and P. C. Jin (2005). Chem. Phys. Lett. 403, 367.CrossRefGoogle Scholar
  9. 9.
    J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.CrossRefGoogle Scholar
  10. 10.
    A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 78, 4066.CrossRefGoogle Scholar
  11. 11.
    A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 1736.Google Scholar
  12. 12.
    A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.CrossRefGoogle Scholar
  13. 13.
    J. E. Carpenter and F. Weinhold (1988). J. Mol. Struct. (THEOCHEM) 169, 41.CrossRefGoogle Scholar
  14. 14.
    A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.CrossRefGoogle Scholar
  15. 15.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  16. 16.
    L. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785.CrossRefGoogle Scholar
  17. 17.
    J. P. Perdew (1986). Phys. Rev. B. 33, 8822.CrossRefGoogle Scholar
  18. 18.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.CrossRefGoogle Scholar
  19. 19.
    A. D. Becke (1988). Phys. Rev. A. 38, 3098.CrossRefGoogle Scholar
  20. 20.
    J. P. Perdew and Y. Wang (1992). Phys. Rev. B. 45, 13244.CrossRefGoogle Scholar
  21. 21.
    P. M. W. Gill (1996). Mol. Phys. 89, 433.CrossRefGoogle Scholar
  22. 22.
    C. Adamo and V. Barone (1998). J. Chem. Phys. 108, 664.CrossRefGoogle Scholar
  23. 23.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  24. 24.
    N. C. Handy and A. J. Cohen (2001). Mol. Phys. 99, 403.CrossRefGoogle Scholar
  25. 25.
    J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.CrossRefGoogle Scholar
  26. 26.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.CrossRefGoogle Scholar
  27. 27.
    W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.CrossRefGoogle Scholar
  28. 28.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  29. 29.
    W. Stevens, H. Basch, and J. Krauss (1984). J. Chem. Phys. 81, 6026.CrossRefGoogle Scholar
  30. 30.
    W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien (1992). Can. J. Chem. 70, 612.CrossRefGoogle Scholar
  31. 31.
    T. R. Cundari and W. J. Stevens (1993). J. Chem. Phys. 98, 5555.CrossRefGoogle Scholar
  32. 32.
    D. Andvae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta. 77, 123.CrossRefGoogle Scholar
  33. 33.
    J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408.CrossRefGoogle Scholar
  34. 34.
    F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.CrossRefGoogle Scholar
  35. 35.
    B. Delley (1990). J. Chem. Phys. 92, 508.CrossRefGoogle Scholar
  36. 36.
    B. Delley (2000). J. Chem. Phys. 113, 7756, (Dmol3 is available as part in Materials Studio).Google Scholar
  37. 37.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Gaussian 03, Revision B 02 (Gaussian, Inc., Pittsburgh PA, 2003).Google Scholar
  38. 38.
    Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1993). J. Phys. Chem. 97, 9263.CrossRefGoogle Scholar
  39. 39.
    J. L. Jules and J. R. Lombardi (2003). J. Phys. Chem. A. 107, 1268.CrossRefGoogle Scholar
  40. 40.
    C. W. Bauschlicher Jr. (2008). Chem. Phys. Lett. 462, 183.CrossRefGoogle Scholar
  41. 41.
    Z. Hu, B. Shen, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 96, 8757.CrossRefGoogle Scholar
  42. 42.
    M. W. Heaven, G. M. Stewart, M. A. Buntine, and G. F. Metha (2000). J. Phys. Chem. A. 104, 3308.CrossRefGoogle Scholar
  43. 43.
    W. Fa, C. F. Luo, and J. M. Dong (2006). J. Chem. Phys. 125, 114305.CrossRefGoogle Scholar
  44. 44.
    Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 97, 8811.CrossRefGoogle Scholar
  45. 45.
    Z. J. Wu (2003). Chem. Phys. Lett. 370, 510.CrossRefGoogle Scholar
  46. 46.
    J. G. Du, X. Y. Sun, D. Q. Meng, P. C. Zhang, and G. Jiang (2009). J. Chem. Phys. 131, 044313.CrossRefGoogle Scholar
  47. 47.
    H. S. Cheng and L. S. Wang (1996). Phys. Rev. Lett. 77, 51.CrossRefGoogle Scholar
  48. 48.
    Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1994). J. Chem. Phys. 101, 95.CrossRefGoogle Scholar
  49. 49.
    D. G. Leopold, T. M. Miller, and W. C. Lineberger (1986). J. Am. Chem. Soc. 108, 178.CrossRefGoogle Scholar
  50. 50.
    R. D. Van Zee, S. C. Blankespoor, and T. S. Zwier (1988). J. Chem. Phys. 88, 4650.CrossRefGoogle Scholar
  51. 51.
    J. Koperskl, J. B. Atkinson, and L. Krause (1994). Chem. Phys. Lett. 219, 161.CrossRefGoogle Scholar
  52. 52.
    K. Hilpert (1982). J. Chem. Phys. 77, 1425.CrossRefGoogle Scholar
  53. 53.
    D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009). J. Chem. Phys. 130, 164108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiyuan Sun
    • 1
  • Jiguang Du
    • 1
  • Pengcheng Zhang
    • 2
  • Gang Jiang
    • 1
  1. 1.Institutes of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.State Key Laboratory of Surface Physics and ChemistryMianyangChina

Personalised recommendations