Skip to main content
Log in

New Cluster Complexes with Octahedral Cores of Niobium Atoms: Syntheses, Structures, and Properties of [K(18-crown-6)]2[K(18-crown-6)(H2O)2]2[Nb6Cl12(CN)6] · 2CH3CN and [(C6H5)4P]4[Nb6Cl12(NCS)6] · 0.94CH3OH

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The syntheses and structures of [K(18-crown-6)]2[K(18-crown-6)(H2O)2]2[Nb6Cl12(CN)6] · 2CH3CN (1) and [(C6H5)4P]4[Nb6Cl12(NCS)6] · 0.94CH3OH (2), determined by X-ray single crystal diffraction, are reported. Crystal data: [K(18-crown-6)]2[K(18-crown-6)(H2O)2]2[Nb6Cl12(CN)6] · 2CH3CN: monoclinic, P21/n, a = 17.8240(9), b = 15.9395(8), c = 18.660(1) Å, β = 113.833(2)°, Z = 2; [(C6H5)4P]4[Nb6Cl12(NCS)6] · 0.94CH3OH: triclinic, \( P\bar{1} \), a = 14.6239(3), b = 14.6237(5), c = 15.9831(3) Å, α = 113.482(1)°, β = 114.684(1)°, γ = 92.585(1)°, Z = 1. Both complexes contain [Nb6Cl12 Y 6]4− cluster anions with Y = CN and NCS, respectively, on all six cluster exo-positions. They have been prepared via ligand substitution in solution, starting from K4[Nb6Cl18], which was synthesized by a high temperature solid state reaction. Structural trends and spectroscopic properties are discussed and compared to related compounds reported previously in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. A. Vaughan, J. H. Sturdivant, and L. Pauling (1950). J. Am. Chem. Soc. 72, 5477.

    Article  CAS  Google Scholar 

  2. A. Simon, H. G. von Schnering, H. Wöhrle, and H. Schäfer (1965). Z. Anorg. Allg. Chem. 339, 155.

    Article  CAS  Google Scholar 

  3. H. Schäfer and H. G. von Schnering (1964). Angew. Chem. 20, 833.

    Article  Google Scholar 

  4. A. Simon (1988). Angew. Chem. 100, 163.

    Google Scholar 

  5. A. Simon (1988). Angew. Chem. Int. Ed. 27, 159.

    Google Scholar 

  6. G. Meyer (1988). Chem. Rev. 88, 93.

    Article  CAS  Google Scholar 

  7. J. D. Corbett, in E. Parthé (ed.), Modern Perspectives in Inorganic Crystal Chemistry (Kluwer, Dortrecht, the Netherlands, 1992), p. 27.

  8. A. Simon, in G. Schmidt (ed.), Clusters and Colloids. From Theory to Applications (VCH Publishers, Weinheim, 1994), Chapter 5, p. 373.

  9. J. R. Long, L. S. McCarty, and R. H. Holm (1996). J. Am. Chem. Soc. 118, 4603.

    Article  CAS  Google Scholar 

  10. T. Saito (1999). J. Chem. Soc. Dalton Trans. 2, 97, and references therein.

    Article  Google Scholar 

  11. N. Prokopuk and D. F. Shriver (1999). Adv. Inorg. Chem. 46, 1.

    Article  Google Scholar 

  12. C. Perrin, in P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry, Vol. 3 (Wiley, Weinheim, 1999), p. 1563.

  13. J. D. Corbett (2000). Inorg. Chem. 39, 5178, and references therein.

    Article  CAS  Google Scholar 

  14. W. C. Dorman and R. E. McCarley (1974). Inorg. Chem. 13, 491.

    Article  CAS  Google Scholar 

  15. A. Simon, H. G. von Schnering, and H. Schäfer (1968). Z. Anorg. Allg. Chem. 361, 235.

    Article  CAS  Google Scholar 

  16. F. W. Koknat, J. A. Parsons, and A. Vongvusharintra (1974). Inorg. Chem. 13, 1699.

    Article  CAS  Google Scholar 

  17. P. B. Fleming, L. A. Müller, and R. E. McCarley (1967). Inorg. Chem. 6, 1.

    Article  CAS  Google Scholar 

  18. A. Broll, D. Juza, and H. Schäfer (1971). Z. Anorg. Allg. Chem. 382, 69.

    Article  CAS  Google Scholar 

  19. A. Broll and H. Schäfer (1970). J. Less-Common Met. 22, 367.

    Article  CAS  Google Scholar 

  20. C. Perrin and M. Sergent (1991). J. Solid State Chem. 28, 933.

    CAS  Google Scholar 

  21. S. Ihmaïne, C. Perrin, O. Peña, and M. Sergent (1988). J. Less-Common Met. 137, 323.

    Article  Google Scholar 

  22. O. Peña, S. Ihmaïne, C. Perrin, and M. Sergent (1990). Solid State Commun. 74, 285.

    Article  Google Scholar 

  23. S. Ihmaïne, C. Perrin, O. Peña, and M. Sergent (1990). Physica B163, 615.

    Google Scholar 

  24. C. Perrin, S. Cordier, S. Ihmaïne, and M. Sergent (1995). J. Alloys Compd. 229, 123.

    Article  CAS  Google Scholar 

  25. S. Ihmaïne, C. Perrin, and M. Sergent (1987). Acta Crystallogr. 43C, 813.

    Google Scholar 

  26. S. Ihmaïne, C. Perrin, and M. Sergent (1989). Acta Crystallogr. 45C, 705.

    Google Scholar 

  27. T. Duraisamy, J. S. Qualls, and A. Lachgar (2003). J. Solid State Chem. 170, 227.

    Article  CAS  Google Scholar 

  28. A. Nägele, E. Anokhina, J. Sitar, H.-J. Meyer, and A. Lachgar (2000). Z. Naturforsch. 55B, 139.

    Google Scholar 

  29. B. Baján and H.-J. Meyer (1995). Z. Naturforsch. 50B, 1373.

    Google Scholar 

  30. A. Lachgar and H.-J. Meyer (1994). J. Solid State Chem. 110, 15.

    Article  CAS  Google Scholar 

  31. N. Brničević, B. Kojić-Prodić, and D. Plavšić (1981). Z. Anorg. Allg. Chem. 472, 200.

    Article  Google Scholar 

  32. H. Schäfer, B. Plautz, and H. Plautz (1972). Z. Anorg. Allg. Chem. 392, 10.

    Article  Google Scholar 

  33. F. W. Koknat, J. A. Parsons, and A. Vongvusharintra (1974). Inorg. Chem. 13, 1699.

    Article  CAS  Google Scholar 

  34. B. Spreckelmeyer (1968). Z. Anorg. Allg. Chem. 358, 147.

    Article  CAS  Google Scholar 

  35. D. D. Klendworth and R. A. Walton (1981). Inorg. Chem. 20, 1151.

    Article  CAS  Google Scholar 

  36. H. Imoto, S. Hayakawa, N. Morita, and T. Saito (1990). Inorg. Chem. 29, 2007.

    Article  CAS  Google Scholar 

  37. U. Beck, A. Simon, N. Brničević, and S. Širac (1995). Croat. Chem. Acta 68, 837.

    CAS  Google Scholar 

  38. B. Yan, H. Zhou, and A. Lachgar (2003). Inorg. Chem. 42, 8818.

    Article  CAS  Google Scholar 

  39. N. G. Naumov, S. Cordier, and C. Perrin (2002). Angew. Chem. 114, 3128.

    Google Scholar 

  40. N. G. Naumov, S. Cordier, and C. Perrin (2002). Angew. Chem. Int. Ed. 41, 3002.

    Google Scholar 

  41. A. Bernsdorf, A.Flemming, and M. Köckerling, unpublished results.

  42. N. G. Naumov, S. Cordier, and C. Perrin (2003). Solid State Sci. 5, 1359.

    Article  CAS  Google Scholar 

  43. N. G. Naumov, S. Cordier, and C. Perrin (2004). Chem. Commun. 1126.

  44. O. Reckeweg and H.-J. Meyer (1996). Z. Anorg. Allg. Chem. 622, 411.

    Article  CAS  Google Scholar 

  45. H.-J. Meyer (1995). Z. Anorg. Allg. Chem. 621, 921.

    Article  CAS  Google Scholar 

  46. O. Reckeweg and H.-J. Meyer (1995). Z. Naturforsch. 50b, 1377.

    Google Scholar 

  47. O. Reckeweg, H.-J. Meyer, and A. Simon (2002). Z. Anorg. Allg. Chem. 628, 920.

    Article  CAS  Google Scholar 

  48. L. F. Piedra-Garza and M. Köckerling (2006). Inorg. Chem. 45, 8829.

    Article  CAS  Google Scholar 

  49. U. Beck, A. Simon, N. Brničević, and S. Širac (1995). Croat. Chem. Acta 68, 837.

    CAS  Google Scholar 

  50. B. Yan, C. S. Day, and A. Lachgar (2004). Chem. Commun. 2390.

  51. H. Zhou, K. C. Strates, M. Á. Muñoz, K. J. Little, D. M. Pajerowski, M. W. Meisel, D. R. Talham, and A. Lachgar (2007). Chem. Mater. 19, 2238.

    Article  CAS  Google Scholar 

  52. J.-J. Zhang, H.-J. Zhou, and A. Lachgar (2007). Angew. Chem. 119, 5083,

    Google Scholar 

  53. J.-J. Zhang, H.-J. Zhou, and A. Lachgar (2007). Angew. Chem. Int. Ed. 46, 4995.

    Google Scholar 

  54. H. Zhou, C. S. Day, and A. Lachgar (2004). Chem. Mater. 16, 4870.

    Article  CAS  Google Scholar 

  55. H. Zhou, C. S. Day, and A. Lachgar (2006). Cryst. Growth Des. 6, 2384.

    Article  CAS  Google Scholar 

  56. Y. Kim, S. M. Park, W. Nam, and S. J. Kim (2001). Chem. Commun. 1470.

  57. Y. Kim, S. M. Park, and S. J. Kim (2002). Inorg. Chem. Commun. 5, 592.

    Article  CAS  Google Scholar 

  58. H. Zhou and A. Lachgar (2007). Eur. J. Inorg. Chem. 1053.

  59. Z. Yan, C. S. Day, and A. Lachgar (2005). Inorg. Chem. 44, 4499.

    Article  CAS  Google Scholar 

  60. N. Prokopuk and D. F. Shriver (1999). Chem. Mater. 11, 1230.

    Article  CAS  Google Scholar 

  61. U. Welz-Biermann, N. V. Ignatiev, E. Bernhardt, M. Finze, and H. Willner (2004). Merck Patent GmbH, Darmstadt, WO 2004/072089.

  62. SADABS, Diffractometer Absorption- and Scaling Program (Bruker-Nonius Inc, Madison, WI, USA, 2003).

    Google Scholar 

  63. G. M. Sheldrick, SHELXS97 and SHELXL97 (Programs for the Solution and Refinement of Crystal Structures, Göttingen 1997).

  64. N. G. Naumov, S. Cordier, F. Gulo, T. Roisnel, V. E. Fedorov, and C. Perrin (2003). Inorg. Chim. Acta 350, 503.

    Article  CAS  Google Scholar 

  65. P. M. Boorman and B. P. Straughan (1966). J. Chem. Soc.(A), 1514.

  66. R. Mattes (1969). Z. Anorg. Allg. Chem. 364, 297.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dipl.-Chem. Alexander Wulf and Prof. Dr. Ralf Ludwig for the FIR spectra and Prof. Dr. Helmut Reinke for maintaining the X-ray equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Köckerling.

Additional information

Dedicated to Professor Dr. Christiane Perrin and Professor Dr. André Perrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flemming, A., Bernsdorf, A. & Köckerling, M. New Cluster Complexes with Octahedral Cores of Niobium Atoms: Syntheses, Structures, and Properties of [K(18-crown-6)]2[K(18-crown-6)(H2O)2]2[Nb6Cl12(CN)6] · 2CH3CN and [(C6H5)4P]4[Nb6Cl12(NCS)6] · 0.94CH3OH. J Clust Sci 20, 113–131 (2009). https://doi.org/10.1007/s10876-008-0217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0217-2

Keywords

Navigation