Journal of Cluster Science

, Volume 17, Issue 2, pp 427–443 | Cite as

Counter-Ion Association Effect in Dilute Giant Polyoxometalate [AsIII 12CeIII 16(H2O)36W148O524]76−({W148}) and [Mo132O372(CH3COO)30 (H2O)72]42− ({Mo132}) Macroanionic Solutions

  • Guang Liu
  • Melissa L. Kistler
  • Tong Li
  • Anish Bhatt
  • Tianbo Liu


This article reports the use of simple conductivity measurements to explore the state of small counter-ions (mostly NH 4 + and Na+) in \([\hbox{As}^{\rm III}_{12}\hbox{Ce}^{\rm III}_{16}(\hbox{H}_2\hbox{O})_{36}\hbox{W}_{148}\hbox{O}_{524}]^{76-} (\{\hbox{W}_{148}\})\) and \([\hbox{Mo}_{132}\hbox{O}_{372}(\hbox{CH}_{3}\hbox{COO})_{30} (\hbox{H}_{2}\hbox{O})_{72}]^{42-} (\{\hbox{Mo}_{132}\})\) macroanionic solutions. All the solutions are dialyzed to remove the extra electrolytes. Conductivity measurements on {(NH4)70Na6W148} and {(NH4)42Mo132} solutions at different concentrations both before and after dialysis indicate that the state of counter-ions has obvious concentration dependence. The “counter-ion association” phenomenon, that is, some small counter-ions closely associate with macroanions and move together, has been observed in both types of macroionic solutions above certain concentration. The association of counter-ions in hydrophilic macroionic solutions provides support on our previous speculation that the counter-ions might be responsible for the unique self-assembly of such macroanions into single-layer blackberry-type structures.


Polyoxometalate solution macroion self-assembly conductivity polyelectrolyte 



T.L. acknowledges support of this work by the National Science Foundation and Lehigh University (startup fund and FRG).


  1. 1.
    C. L. Hill ed. (1998). Polyoxometalates, Chem. Rev. 98, 1–387Google Scholar
  2. 2.
    M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer Verlag, New York, 1983)Google Scholar
  3. 3.
    M. T. Pope and A. Müller (eds.) Polyoxometalates: From Platonic Solids to Anti Retroviral Activity (Kluwer, Dordrecht, 1994)Google Scholar
  4. 4.
    M. T. Pope and M. T. Müller (eds.) Polyoxometalates: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001)Google Scholar
  5. 5.
    T. Yamase and M. T. Pope (eds.) Polyoxometalate Chemistry for Nano-Composite Design (Kluwer Academic/Plenum Publishers, New York, NY, 2002)Google Scholar
  6. 6.
    K. Wassermann, M. H. Dickman and M. T. Pope, Angew. Chem. Int. Ed. 36, 1445 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Müller, E. Diemann, C. Kuhlmann, W. Eimer, C. Serain, T. Tak, A. Knöchel and P. K. Pranzas Chem. Commun. 19, 1928 (2001)CrossRefGoogle Scholar
  8. 8.
    T. Liu (2002). J. Am. Chem. Soc. 124, 10942; (2004) J. Am. Chem. Soc. 126, 406 (Add./Cor.)Google Scholar
  9. 9.
    T. Liu, J. Am. Chem. Soc. 125, 312 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    T. Liu, E. Diemann, H. Li, A. Dress and A. Müller, Nature 426, 59 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    G. Liu, Y. Cai and T. Liu, J. Am. Chem. Soc. 126, 16690 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    G. Liu and T. Liu, J. Am. Chem. Soc. 127, 6942 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    G. Liu and T. Liu, Langmuir 21, 2713 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Y. Zhu, A. Cammers-Goodwin, B. Zhao, A. Dozier and E. C. Dickey, Chem. Eur. J. 10, 1 (2004)CrossRefGoogle Scholar
  15. 15.
    B. Chen, H. Jiang, Y. Zhu, A. Cammers and J. P. Selegue J. Am. Chem. Soc. 127, 4166 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann and F. Peters, Angew. Chem. Int. Ed. 37, 3360 (1998)Google Scholar
  17. 17.
    A. Müller, P. Kögerler and A. W. M. Dress, Coord. Chem. Rev. 222, 193 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Müller, S. Polarz, S. K. Das, E. Krickemeyer, H. Bögge, M. Schmidtmann and B. Hauptfleisch, Angew. Chem. Int. Ed. 38, 3241 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Müller and S. Roy, Coord. Chem. Rev. 245, 153 (2003)CrossRefGoogle Scholar
  20. 20.
    (a) F. Bordi, C. Cametti, and T. Gili (2003). Phys. Rev. E 68, 011805 and references therein. (b) W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian (2005). Phys. Today 53, 38Google Scholar
  21. 21.
    CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1992) pp. 5–111Google Scholar
  22. 22.
    K. I. Roy and C. A. Lucy, Electrophoresis 24, 370 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    J. Zhang, Y. Wang, D. Liang, Q. Ying and B. Chu, Macromolecules 38, 1936 (2005)CrossRefGoogle Scholar
  24. 24.
    I. Sogami and N. Ise, J. Chem. Phys. 81, 6320 (1984)CrossRefGoogle Scholar
  25. 25.
    N. Ise, Proc. Japan. Acad. 78, Ser. B, 129 (2002)Google Scholar
  26. 26.
    J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352 (1994)CrossRefPubMedGoogle Scholar
  27. 27.
    G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Guang Liu
    • 1
  • Melissa L. Kistler
    • 1
  • Tong Li
    • 1
  • Anish Bhatt
    • 1
  • Tianbo Liu
    • 1
  1. 1.Department of ChemistryLehigh UniversityBethlehemUSA

Personalised recommendations