Journal of Cluster Science

, Volume 17, Issue 2, pp 197–219 | Cite as

Solid-state Structures and Solution Behavior of Alkali Salts of the \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) Lindqvist Ion

  • May Nyman
  • Todd M. Alam
  • François Bonhomme
  • Mark A. Rodriguez
  • Colleen S. Frazer
  • Margaret E. Welk


The hexaniobate Lindqvist ion \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) has long been known as the dominant specie in alkaline niobium oxide solutions. Recent advances in heteropolyniobate chemistry continue to be greatly aided by use of \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) alkali salts as soluble precursors; in particular, potassium, sodium and lithium hexaniobate salts. We report here the solid-state characterization and solution behavior of Li, K, Rb and Cs Lindqvist \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) salts. Synthesis and single-crystal X-ray diffraction data is reported for nine new hexaniobate salts. These structures differ in the number of charge-balancing alkali cations, protonation of the clusters, relative arrangement of the clusters and alkali metal cations, amount of lattice water and its mode of interaction with other lattice species. Trends of alkali-cluster bonding are observed as a function of alkali radius. Protonation of the clusters in the solid-state is influenced by the method of crystallization of the \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) salt. Lability of the cluster oxygens is observed by solution 17O NMR experiments. Rates of isotopic enrichment of the bridging oxygen, terminal oxygen and bridging hydroxyl cluster sites are compared for aqueous solutions of Li, K, Rb and Cs hexaniobate salts. Parameters influencing the oxo-ligand exchange rates of the salts are discussed relative to their use as heteropolyniobate precursors.

Key words:

Lindqvist ion hexaniobate polyoxoniobate chemistry 17O NMR. 



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04–94Al85000. The authors thank the Sandia National Laboratories LDRD program for funding for this work, and Reference Metals Company for kindly supplying hydrous niobium oxide.


  1. 1.
    Bonhomme F. et al. (2005). Inorg. Chem. 44:1774CrossRefPubMedGoogle Scholar
  2. 2.
    Nyman M. et al. (2004). Angew. Chem. Int. Ed. Engl. 43:2787CrossRefPubMedGoogle Scholar
  3. 3.
    Nyman M. et al. (2002). Science 297:996CrossRefPubMedGoogle Scholar
  4. 4.
    Goiffon A. et al. (1973). Rev. Chim. Miner. 10:487Google Scholar
  5. 5.
    Graeber E. J., Morosin B. (1977). Acta Crystallogr. B-Struct. Sci. 33:2137CrossRefGoogle Scholar
  6. 6.
    Nyman M. et al. (2003). J. Solid State Chem. 176:111CrossRefGoogle Scholar
  7. 7.
    Lindqvist I. (1953). Arkiv for Kemi 5:247Google Scholar
  8. 8.
    Goiffon A., Spinner B. (1974). Chim. Miner. Rev. 11:262Google Scholar
  9. 9.
    Alam T. M. et al. (2004). J. Am. Chem. Soc. 126:5610CrossRefPubMedGoogle Scholar
  10. 10.
    Goiffon A. et al. (1980). Rev. Chim. Miner. 17:466Google Scholar
  11. 11.
    Besserguenev A. V. et al. (2001). Inorg. Chem. 40:2582CrossRefPubMedGoogle Scholar
  12. 12.
    Fernanda M. et al. (2000). J. Coord. Chem. 50:145Google Scholar
  13. 13.
    Flynn C. M., Stucky G. D. (1968). Inorg. Chem. 8:332CrossRefGoogle Scholar
  14. 14.
    Hegetschweiler K. et al. (2002). Inorg. Chim. Acta 337:39CrossRefGoogle Scholar
  15. 15.
    Ozeki T. et al. (1994). Inorg. Chem. 33:409CrossRefGoogle Scholar
  16. 16.
    Ozeki T. et al. (1994). Bull. Chem. Soc. Jpn. 67:3249CrossRefGoogle Scholar
  17. 17.
    Canny J. et al. (1986). Inorg. Chem. 25:2114CrossRefGoogle Scholar
  18. 18.
    Contant R., Teze A. (1985). Inorg. Chem. 24:4610CrossRefGoogle Scholar
  19. 19.
    Grigoriev V. A. et al. (2000). J. Am. Chem. Soc. 122:3544CrossRefGoogle Scholar
  20. 20.
    Johnson B. J. S. et al. (2001). Inorg. Chem. 40:5972CrossRefPubMedGoogle Scholar
  21. 21.
    Jorris T. L. et al. (1990). Inorg. Chem. 29:4584CrossRefGoogle Scholar
  22. 22.
    Kim K. C., Pope M. T. (1999). J. Am. Chem. Soc. 121:8512CrossRefGoogle Scholar
  23. 23.
    Knoth W. H., Harlow R. L. (1981). J. Am. Chem. Soc. 103:1865CrossRefGoogle Scholar
  24. 24.
    N. Laronze, et al. (2003). Chem. Commun., 2360Google Scholar
  25. 25.
    Long D. L. et al. (2004). J. Am. Chem. Soc. 126:13880CrossRefPubMedGoogle Scholar
  26. 26.
    Rozantsev G. M. et al. (2000). Russ. J. Coord. Chem. 26:247Google Scholar
  27. 27.
    Santos I. C. M. S. et al. (2002). Polyhedron 21:2009CrossRefGoogle Scholar
  28. 28.
    SMART, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1999)Google Scholar
  29. 29.
    SAINT-PLUS, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1998)Google Scholar
  30. 30.
    SADABS, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1998)Google Scholar
  31. 31.
    Farrugia L. J. (1999). J. Appl. Cryst. 32:837CrossRefGoogle Scholar
  32. 32.
    Altomare A. et al. (1999). J. Appl. Cryst. 32:115CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick, SHELX97, 97–2 ed., (Institüt für Anorganische Chemie der Universität, Göttingen, Germany, 1998)Google Scholar
  34. 34.
    Massiot D. et al. (2002). Magn. Reson. Chem. 40:70CrossRefGoogle Scholar
  35. 35.
    Cotton F. A., Wilkinson G. (1988). Advanced Inorganic Chemistry. John Wiley & Sons, New YorkGoogle Scholar
  36. 36.
    Filowitz M. et al. (1979). Inorg. Chem. 18:93CrossRefGoogle Scholar
  37. 37.
    Matsumoto M. et al. (2004). Inorg. Chem. 43:1153CrossRefPubMedGoogle Scholar
  38. 38.
    Weinstock I. A. (1998). Chem. Rev. 98:113CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • May Nyman
    • 1
  • Todd M. Alam
    • 1
  • François Bonhomme
    • 1
  • Mark A. Rodriguez
    • 1
  • Colleen S. Frazer
    • 1
  • Margaret E. Welk
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations