Journal of Cluster Science

, Volume 16, Issue 4, pp 547–558 | Cite as

Electronic Structures of 3d-Metal Monolithides

  • M. Y. Wang
  • Z. J. Wu


Bond distances, vibrational frequencies, dipole moments, electron affinities, ionization potentials and dissociation energies of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method B3LYP. The calculated results were compared with experiments and previous theoretical studies. Ground electronic states for each molecule were assigned. It was found that for some molecules, low-lying state, in which the energy is much close to the ground state, was obtained. In this case, further studies both experimentally and theoretically are necessary in order to find the true global minimum.


3d transition metal monolithides electronic structure density functional theory 



The authors thank the National Natural Science Foundation of China for financial support (Grant Nos. 20331030 and 20571073).


  1. 1.
    Harrison J. F. (2000). Chem. Rev. 100:679CrossRefPubMedGoogle Scholar
  2. 2.
    Barone V., Adamo C. (1997). Int. J. Quantum Chem. 61:443CrossRefGoogle Scholar
  3. 3.
    Chong D. P., Langhoff S. R., Bauschlicher C. W. Jr., Walch S. P., Partridge H. (1986). J. Chem. Phys. 85:2850CrossRefGoogle Scholar
  4. 4.
    Pettersson L. G. M., Bauschlicher C. W. Jr., Langhoff S. R., Partridge H. (1987). J. Chem. Phys. 87:481CrossRefGoogle Scholar
  5. 5.
    Das G. (1981). J. Chem. Phys. 74:5766CrossRefGoogle Scholar
  6. 6.
    Ziegler T., Li J. (1994). Can. J. Chem. 72:783CrossRefGoogle Scholar
  7. 7.
    Gutsev G. L., Andrews L., Bauschlicher C. W. Jr. (2003). Theor. Chem. Acc. 109:298Google Scholar
  8. 8.
    Tong G. S. M., Jeung G. H., Cheung A. S.-C. (2003). J. Chem. Phys. 118:9224CrossRefGoogle Scholar
  9. 9.
    Wu Z. J. (2005). J. Mol. Struc.(Theochem) 728:167CrossRefGoogle Scholar
  10. 10.
    Siegbahn P. E. M. (1993). Chem. Phys. Lett. 201:15CrossRefGoogle Scholar
  11. 11.
    Brock L. R., Knight A. M., Reddic J. E., Pilgrim J. S., Duncan M. A. (1997). J. Chem. Phys. 106:6268CrossRefGoogle Scholar
  12. 12.
    Russon L. M., Rothschopf G. K., Morse M. D. (1997). J. Chem. Phys. 107:1079CrossRefGoogle Scholar
  13. 13.
    Neubert A., Zmbov K. F. (1984). Trans. Faraday Soc. 70:2219Google Scholar
  14. 14.
    Van Zee R. J., Baumann C. A., Weltner W. Jr. (1985). Chem. Phys. Lett. 113:524CrossRefGoogle Scholar
  15. 15.
    Lawson D. B., Harrison J. F. (1996). J. Chem. Phys. 100:6081CrossRefGoogle Scholar
  16. 16.
    Bast R., Schwerdtfeger P. (2003). J. Chem. Phys. 19:5983Google Scholar
  17. 17.
    Beckmann H.-O., Pacchioni G., Jeung G. H. (1985). Chem. Phys. Lett. 116:423CrossRefGoogle Scholar
  18. 18.
    Harrison J. F. (1983). J. Phys. Chem. 87:1323CrossRefGoogle Scholar
  19. 19.
    Tong G. S.-M., Cheung A. S.-C. (2002). J. Phys. Chem. 106:11637Google Scholar
  20. 20.
    Bauschlicher C. W. Jr., Langhoff S. R., Partridge H., Walch S. P. (1987). J. Chem. Phys. 86:5603CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, et al., Gaussian03, Gaussian, Inc.: Pittsburgh, PA, 2003Google Scholar
  22. 22.
    Becke A. D. (1993). J. Chem. Phys. 98:5648CrossRefGoogle Scholar
  23. 23.
    Lee C., Yang W., Parr R. G. (1988). Phys. Rev. B 37:785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPR China
  2. 2.Graduate School, Chinese Academy of SciencesBeijingPR China

Personalised recommendations