Advertisement

Journal of Cluster Science

, Volume 15, Issue 4, pp 469–487 | Cite as

Density Functional Theory and Low-Temperature Matrix Investigations of CO-Loss Photochemistry from [(C5R5)Ru(CO)2]2 (R = H, Me) Complexes

  • Sibrina N. Collins
  • Constance M. Brett
  • Bruce E. Bursten
Article

Abstract

The photochemical CO-loss products of the diruthenium complexes [CpRu(CO) 2]2 (5; Cp = η5-C5H5), [Cp*Ru(CO)2]2 (5*; Cp* = η5-C5(CH3)5) and CpCp*[Ru(CO)2]2 (5′) have been studied experimentally in low-temperature (96 K) matrices in 3-methylpentane by using IR spectroscopy. It is proposed that all three complexes undergo single-CO-loss chemistry but that the products have different structures. The single-CO-loss product from 5 is proposed to have one bridging and two terminal carbonyl ligands, whereas 5* and 5′ generate triply bridged CO-loss products similar to that observed from [CpFe(CO)2]2 and [Cp*Fe(CO)2]2. Double-CO-loss from 5* and 5*9′ is also apparently observed. Relativistic DFT calculations have been carried out on various isomers of the starting materials and on potential CO-loss products from 5. The calculations suggest that the triply bridged product Cp2Ru2(μ-CO)3 (6) might have a singlet ground state in contrast to the corresponding diiron complex Cp2Fe2(μ-CO)3 (3), which has a triplet ground state.

Ruthenium photochemistry dimer isomerization DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    F. A. Cotton and R. A. Walton. Mutiple Bonds Between Metal Atoms (Clarendron Press, Oxford, 1993).Google Scholar
  2. 2.
    T. J. Meyer and J. V. Caspar (1985). Chem. Rev. 85, 187.Google Scholar
  3. 3.
    T. E. Bitterwolf (2000). Coord. Chem. Rev. 419, 206–207.Google Scholar
  4. 4.
    R. H. Hooker, K. A. Mahmoud, and A. J. Rest (1983). J. Chem. Soc., Chem. Commun. 1022.Google Scholar
  5. 5.
    A. F. Hepp, J. P. Blaha, C. Lewis, and M. S. Wrighton (1984). Organometallics 3, 174.Google Scholar
  6. 6.
    J. P. Blaha, B. E. Bursten, J. C. Dewan, R. B. Frankel, C. L. Randolph, B. A. Wilson, and M. S. Wrighton (1985). J. Am. Chem. Soc. 107, 4561.Google Scholar
  7. 7.
    M. Vitale, K. K. Lee, C. F. Hemann, R. Hille, T. L. Gustafson, and B. E. Bursten (1995). J. Am. Chem. Soc. 118, 2286.Google Scholar
  8. 8.
    F. A. Kvietok and B. E. Bursten (1994). J. Am. Chem. Soc. 116, 9807.Google Scholar
  9. 9.
    M. Vitale, M. E. Archer, and B. E. Bursten (1998). Chem. Commun.179.Google Scholar
  10. 10.
    R. H. Hooker and A. J. Rest (1990). J. Chem. Soc., Dalton Trans. 1221.Google Scholar
  11. 11.
    P. E. Bloyce, A. K. Campen, R. H. Hooker, A. J. Rest, N. R. Thomas, T. E. Bitterwolf, and J. E. Shade (1990). J. Chem. Soc., Dalton Trans. 2833.Google Scholar
  12. 12.
    T. E. Bitterwolf, J. E. Shade, J. A. Hansen, and A. L. Rheingold (1996). J. Organomet. Chem. 514, 13.Google Scholar
  13. 13.
    R. Boese, J. K. Cammack, A. J. Matzger, K. Pflug, W. B. Tolman, K. P. C. Vollhardt, and T. W. Weidman (1997). J. Am. Chem. Soc. 119, 6757.Google Scholar
  14. 14.
    P. Burger (2001). Angew. Chem. 40, 1917.Google Scholar
  15. 15.
    W. Macyk, A. Herdegen, A. Karocki, G. Stochel, Z. Stasicka, S. Sostero, and O. Traverso (1997). J. Photochem. Photobiol., A 103, 221.Google Scholar
  16. 16.
    W. Macyk, A. Herdegen, G. Stochel, Z. Stasicka, S. Sostero, and O. Traverso (1997). Polyhedron 16, 3339.Google Scholar
  17. 17.
    T. E. Bitterwolf, J. C. Linehan, and J. E. Shade (2001). Organometallics 20, 775.Google Scholar
  18. 18.
    A. J. Gordon and R. A. Ford, The Chemist 's Companion:A Handbook of Practical Data, Techniques and References (Wiley, New York, 1972).Google Scholar
  19. 19.
    D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-Sensitive Compounds (Wiley, New York, 1982).Google Scholar
  20. 20.
    D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals (Pergamon Press, New York, 1988).Google Scholar
  21. 21.
    R. D. Fischer and A. Vogler (1962). Z. Naturforsch., B:Chem. Sci. 17, 421.Google Scholar
  22. 22.
    P. McArdle and A. R. Manning (1970). J. Chem. Soc., A 2128.Google Scholar
  23. 23.
    R. B. King, M. Z. Iqbal, and A. D. King Jr. (1979). J. Organomet. Chem. 171, 53.Google Scholar
  24. 24.
    G. O. Nelson and C. E. Sumner (1986). Organometallics 5, 1983.Google Scholar
  25. 25.
    G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931.Google Scholar
  26. 26.
    C. F. Guerra, J. G. Snijders, G. Te Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391.Google Scholar
  27. 27.
    ADF2003. 01 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Nether-lands, http://www. scm. com.Google Scholar
  28. 28.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.Google Scholar
  29. 29.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1994). J. Chem. Phys. 101, 9783.Google Scholar
  30. 30.
    E. van Lenthe, A. E. Ehlers, and E. J. Baerends (1999). J. Chem. Phys. 110, 8943.Google Scholar
  31. 31.
    J. P. Perdew (1986). Phys. Rev. B:Condens. Matter 33, 8822.Google Scholar
  32. 32.
    J. P. Perdew and Y. Wang (1992). Phys. Rev. B:Condens. Matter 45, 13244.Google Scholar
  33. 33.
    J. P. Perdew and Y. Wang (1986). Phys. Rev. B:Condens. Matter 33, 8800.Google Scholar
  34. 34.
    J. G. Bullitt, F. A. Cotton, and T. J. Marks (1972). Inorg. Chem. 11, 671.Google Scholar
  35. 35.
    B. D. Moore, M. Poliakoff, and J. J. Turner (1986). J. Am. Chem. Soc. 108, 1819.Google Scholar
  36. 36.
    J. Wilkinson, Ph. D. Dissertation (The University of Bristol, England, 1998).Google Scholar
  37. 37.
    J. T. Mague (1995). Acta Cryst. C51, 831.Google Scholar
  38. 38.
    A. Steiner, H. Gornitzka, D. Stalke, and F. T. Edelmann (1992). J. Organomet. Chem. 431, C21.Google Scholar
  39. 39.
    O. A. Gansow, A. R. Burke, and W. D. Vernon (1976). J. Am. Chem. Soc. 98, 5817.Google Scholar
  40. 40.
    F. A. Cotton and G. Yagupsky (1967). Inorg. Chem. 6, 15.Google Scholar
  41. 41.
    H. Yang, K. T. Kotz, M. C. Asplund, M. J. Wilkens, and C. B. Harris (1999). Acc. Chem. Res. 32, 551.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Sibrina N. Collins
    • 1
  • Constance M. Brett
    • 2
  • Bruce E. Bursten
    • 1
  1. 1.Department of ChemistryClaflin UniversityOrangeburg
  2. 2.Department of ChemistryThe Ohio State UniversityColumbus

Personalised recommendations