Skip to main content
Log in

Density Functional Theory and Low-Temperature Matrix Investigations of CO-Loss Photochemistry from [(C5R5)Ru(CO)2]2 (R = H, Me) Complexes

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The photochemical CO-loss products of the diruthenium complexes [CpRu(CO) 2]2 (5; Cp = η5-C5H5), [Cp*Ru(CO)2]2 (5*; Cp* = η5-C5(CH3)5) and CpCp*[Ru(CO)2]2 (5′) have been studied experimentally in low-temperature (96 K) matrices in 3-methylpentane by using IR spectroscopy. It is proposed that all three complexes undergo single-CO-loss chemistry but that the products have different structures. The single-CO-loss product from 5 is proposed to have one bridging and two terminal carbonyl ligands, whereas 5* and 5′ generate triply bridged CO-loss products similar to that observed from [CpFe(CO)2]2 and [Cp*Fe(CO)2]2. Double-CO-loss from 5* and 5* 9′ is also apparently observed. Relativistic DFT calculations have been carried out on various isomers of the starting materials and on potential CO-loss products from 5. The calculations suggest that the triply bridged product Cp2Ru2(μ-CO)3 (6) might have a singlet ground state in contrast to the corresponding diiron complex Cp2Fe2(μ-CO)3 (3), which has a triplet ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. A. Cotton and R. A. Walton. Mutiple Bonds Between Metal Atoms (Clarendron Press, Oxford, 1993).

    Google Scholar 

  2. T. J. Meyer and J. V. Caspar (1985). Chem. Rev. 85, 187.

    Google Scholar 

  3. T. E. Bitterwolf (2000). Coord. Chem. Rev. 419, 206–207.

    Google Scholar 

  4. R. H. Hooker, K. A. Mahmoud, and A. J. Rest (1983). J. Chem. Soc., Chem. Commun. 1022.

  5. A. F. Hepp, J. P. Blaha, C. Lewis, and M. S. Wrighton (1984). Organometallics 3, 174.

    Google Scholar 

  6. J. P. Blaha, B. E. Bursten, J. C. Dewan, R. B. Frankel, C. L. Randolph, B. A. Wilson, and M. S. Wrighton (1985). J. Am. Chem. Soc. 107, 4561.

    Google Scholar 

  7. M. Vitale, K. K. Lee, C. F. Hemann, R. Hille, T. L. Gustafson, and B. E. Bursten (1995). J. Am. Chem. Soc. 118, 2286.

    Google Scholar 

  8. F. A. Kvietok and B. E. Bursten (1994). J. Am. Chem. Soc. 116, 9807.

    Google Scholar 

  9. M. Vitale, M. E. Archer, and B. E. Bursten (1998). Chem. Commun.179.

  10. R. H. Hooker and A. J. Rest (1990). J. Chem. Soc., Dalton Trans. 1221.

  11. P. E. Bloyce, A. K. Campen, R. H. Hooker, A. J. Rest, N. R. Thomas, T. E. Bitterwolf, and J. E. Shade (1990). J. Chem. Soc., Dalton Trans. 2833.

  12. T. E. Bitterwolf, J. E. Shade, J. A. Hansen, and A. L. Rheingold (1996). J. Organomet. Chem. 514, 13.

    Google Scholar 

  13. R. Boese, J. K. Cammack, A. J. Matzger, K. Pflug, W. B. Tolman, K. P. C. Vollhardt, and T. W. Weidman (1997). J. Am. Chem. Soc. 119, 6757.

    Google Scholar 

  14. P. Burger (2001). Angew. Chem. 40, 1917.

    Google Scholar 

  15. W. Macyk, A. Herdegen, A. Karocki, G. Stochel, Z. Stasicka, S. Sostero, and O. Traverso (1997). J. Photochem. Photobiol., A 103, 221.

    Google Scholar 

  16. W. Macyk, A. Herdegen, G. Stochel, Z. Stasicka, S. Sostero, and O. Traverso (1997). Polyhedron 16, 3339.

    Google Scholar 

  17. T. E. Bitterwolf, J. C. Linehan, and J. E. Shade (2001). Organometallics 20, 775.

    Google Scholar 

  18. A. J. Gordon and R. A. Ford, The Chemist 's Companion:A Handbook of Practical Data, Techniques and References (Wiley, New York, 1972).

    Google Scholar 

  19. D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-Sensitive Compounds (Wiley, New York, 1982).

    Google Scholar 

  20. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals (Pergamon Press, New York, 1988).

    Google Scholar 

  21. R. D. Fischer and A. Vogler (1962). Z. Naturforsch., B:Chem. Sci. 17, 421.

    Google Scholar 

  22. P. McArdle and A. R. Manning (1970). J. Chem. Soc., A 2128.

  23. R. B. King, M. Z. Iqbal, and A. D. King Jr. (1979). J. Organomet. Chem. 171, 53.

    Google Scholar 

  24. G. O. Nelson and C. E. Sumner (1986). Organometallics 5, 1983.

    Google Scholar 

  25. G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931.

    Google Scholar 

  26. C. F. Guerra, J. G. Snijders, G. Te Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391.

    Google Scholar 

  27. ADF2003. 01 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Nether-lands, http://www. scm. com.

  28. E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.

    Google Scholar 

  29. E. van Lenthe, E. J. Baerends, and J. G. Snijders (1994). J. Chem. Phys. 101, 9783.

    Google Scholar 

  30. E. van Lenthe, A. E. Ehlers, and E. J. Baerends (1999). J. Chem. Phys. 110, 8943.

    Google Scholar 

  31. J. P. Perdew (1986). Phys. Rev. B:Condens. Matter 33, 8822.

    Google Scholar 

  32. J. P. Perdew and Y. Wang (1992). Phys. Rev. B:Condens. Matter 45, 13244.

    Google Scholar 

  33. J. P. Perdew and Y. Wang (1986). Phys. Rev. B:Condens. Matter 33, 8800.

    Google Scholar 

  34. J. G. Bullitt, F. A. Cotton, and T. J. Marks (1972). Inorg. Chem. 11, 671.

    Google Scholar 

  35. B. D. Moore, M. Poliakoff, and J. J. Turner (1986). J. Am. Chem. Soc. 108, 1819.

    Google Scholar 

  36. J. Wilkinson, Ph. D. Dissertation (The University of Bristol, England, 1998).

  37. J. T. Mague (1995). Acta Cryst. C51, 831.

    Google Scholar 

  38. A. Steiner, H. Gornitzka, D. Stalke, and F. T. Edelmann (1992). J. Organomet. Chem. 431, C21.

    Google Scholar 

  39. O. A. Gansow, A. R. Burke, and W. D. Vernon (1976). J. Am. Chem. Soc. 98, 5817.

    Google Scholar 

  40. F. A. Cotton and G. Yagupsky (1967). Inorg. Chem. 6, 15.

    Google Scholar 

  41. H. Yang, K. T. Kotz, M. C. Asplund, M. J. Wilkens, and C. B. Harris (1999). Acc. Chem. Res. 32, 551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, S.N., Brett, C.M. & Bursten, B.E. Density Functional Theory and Low-Temperature Matrix Investigations of CO-Loss Photochemistry from [(C5R5)Ru(CO)2]2 (R = H, Me) Complexes. Journal of Cluster Science 15, 469–487 (2004). https://doi.org/10.1007/s10876-004-5770-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-004-5770-8

Navigation