Journal of Biological Physics

, Volume 42, Issue 4, pp 601–620 | Cite as

Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress

  • Parvaneh Sayyad-Amin
  • Mohammad-Reza Jahansooz
  • Azam Borzouei
  • Fatemeh Ajili
Original Paper


Water shortage leads to a low quality of water, especially saline water in most parts of agricultural regions. This experiment was designed to determine the effects of saline irrigation on sorghum as a moderately salt-tolerant crop. To study salinity effects on photosynthetic pigment attributes including the chlorophyll content and chlorophyll fluorescence, an experiment was performed in a climate-controlled greenhouse at two vegetative and reproductive stages. The experimental design was factorial based on a completely randomized design with five NaCl concentrations (control, 50, 100, 150, and 200 mM), two grain and sweet-forage sorghum cultivars (Kimia and Pegah, respectively) and four replications. According to the experimental data, there were no significant differences between two grain and sweet-forage cultivars. Except for 100 and 150 mM NaCl, salinity significantly decreased the chlorophyll index and pigment contents of the leaf, while it increased the chlorophyll-a fluorescence characteristics. Although salinity reduced photosynthetic pigments and the crop yield, either grain or sweet-forage cultivars could significantly control the effect of salinity between 100 and 150 mM NaCl at both developmental stages, showing the possibility of using saline water in sorghum cultivation up to 150 mM NaCl.


Fluorescence Chlorophyll Carotenoid Pigment Salinity Sorghum 

Supplementary material

10867_2016_9428_MOESM1_ESM.doc (70 kb)
Supplementary Information 1 (DOC 69 kb)
10867_2016_9428_MOESM2_ESM.doc (122 kb)
Supplementary Information 2 (DOC 122 kb)
10867_2016_9428_MOESM3_ESM.doc (61 kb)
Supplementary Information 3 (DOC 61 kb)


  1. 1.
    Jiang, Q., Roche, D., Monaco, T.A., Durham, S.: Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crop Res. 96, 269–278 (2006)CrossRefGoogle Scholar
  2. 2.
    Madhana Kumari, P., Sekar, K.: Effect of plant growth regulators on chlorophyll and carotenoid content of salinity stressed okra seedlings. Asian J. Hortic. 3, 54–55 (2008)Google Scholar
  3. 3.
    Weisany, W., Sohrabi, Y., Heidari, G.R., Siosemardeh, A., Ghassemi-Golezani, K.: Physiological responses of soybean [Glycine max L.] to zinc application under salinity stress. Aust. J. Crop. Sci. 5, 1441–1447 (2011)Google Scholar
  4. 4.
    Kang, G., Li, G., Zheng, B., Han, Q., Wang, C., Zhu, Y., Guo, T.: Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings [Triticum aestivum L.]. Biochim. Biophys. Acta 1824, 1324–1333 (2012)CrossRefGoogle Scholar
  5. 5.
    Xing, W., Wang, J., Liu, H., Zou, D., Zhao, H.: Influence of natural saline-alkalistress on chlorophyll content and chloroplast ultrastructure of two contrasting rice [Oryza sativa L. japonica] cultivars. Aust. J. Crop. Sci. 7, 289–292 (2013)Google Scholar
  6. 6.
    Miransari, M., Smith, D.L.: Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J. Plant Nutr. 30, 1967–1992 (2007)CrossRefGoogle Scholar
  7. 7.
    Florina, F., Giancarla, V., Cerasela, P., Sofia, P.: The effect of salt stress on chlorophyll content in several Romanian tomato varieties. J. Hortic. Forest Biotechnol. 17, 363–367 (2013)Google Scholar
  8. 8.
    Karimi, H., Yusef-Zadeh, H.: The effect of salinity level on the morphological and physiological traits of two grape [Vitis vinifera L.] cultivars. Int. J. Agron. Plant Prod. 4, 1108–1117 (2013)Google Scholar
  9. 9.
    Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000)CrossRefGoogle Scholar
  10. 10.
    van Heerden, P.D.R., Tsimilli-Michael, M., Kruger, G.H.J., Strasser, R.J.: Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol. Plant. 117, 476–491 (2003)CrossRefGoogle Scholar
  11. 11.
    van Heerden, P.D.R., Strasser, R.J., Kruger, G.H.J.: Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol. Plant. 121, 239–249 (2004)CrossRefGoogle Scholar
  12. 12.
    Ripley, B.S., Redfern, S.P., Dames, J.: Quantification of the photosynthetic performance of phosphorus-deficient sorghum by means of chlorophyll-a fluorescence kinetics. S. Afr. J. Sci. 100, 615–618 (2004)Google Scholar
  13. 13.
    Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the fluorescence transient. In: Papageorgiou, G.C., Govindjee (eds.) Chlorophyll Fluorescence: a Signature of Photosynthesis, pp. 321–362. Springer, Dordrecht (2004)Google Scholar
  14. 14.
    Tsimilli-Michael, M., Strasser, R.: In vivo assessment of stress impact on plants’ vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. In: Varma, A. (ed.) Mycorrhiza: State of the Art, Genetics and Molecular Biology, Ecofunction,Biotechnology,Eco-physiology, Structure and Systematics, pp. 679–703. Springer, Dordrecht (2008)Google Scholar
  15. 15.
    Stirbet, A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104, 236–257 (2011)CrossRefGoogle Scholar
  16. 16.
    Vanderlip, R.L.: How a sorghum plant develops. Kansas State University, Manhattan (1993)Google Scholar
  17. 17.
    Shrestha, S., Brueck, H., Asch, H.F.: Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J. Photochem. Photobiol. B 113, 7–13 (2012)CrossRefGoogle Scholar
  18. 18.
    Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (eds.) Probing Photosynthesis: Mechanism, Regulation and Adaptation, pp. 445–485. Taylor and Francis, London (2000)Google Scholar
  19. 19.
    Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Aust. J. Plant Physiol. 144, 307–313 (1994)CrossRefGoogle Scholar
  20. 20.
    Netondo, G.W., Onyango, J.C., Beck, E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 44, 806–811 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, D., Wilson, C., Shannon, M.C.: Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near-infrared spectrum domain. Int. J. Remote Sens. 23, 811–824 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, D., Grieve, C.M., Suarez, D.L.: Composition of irrigation water salinity affects growth characteristics and uptake of selenium and salt ions by soybean. J. Plant Nutr. 28, 1073–1088 (2005)CrossRefGoogle Scholar
  23. 23.
    Kafi, M.: The effects of salinity and light on photosynthesis, respiration and chlorophyll fluorescence in salt-tolerant and salt-sensitive wheat [Triticum aestivum L.] cultivars. J. Agric. Sci. Technol. 11, 535–547 (2009)Google Scholar
  24. 24.
    Raja Babu, C., Vijayalakshmi, C.: Impact of salt stress on chlorophyll fraction in rice [Oryza sativa L.] leaves. Plant Arch. 8, 969–971 (2008)Google Scholar
  25. 25.
    Memon, S.A., Wang, L.J., Hou, X.L.: Effect of 5-aminolevulinic acid (ALA) on antioxidative enzymes, chlorophyll content, and photosynthesis of Pakchoi [Brassica campestris ssp. Chinensis] under salt stress. Int. J. Agric. Sci. Technol. 9, 1333–1346 (2013)Google Scholar
  26. 26.
    Yamane, K., Kawasaki, M., Taniguchi, M., Miyake, H.: Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice [Oryza sativa L.] grown under salinity. Plant Prod. Sci. 11, 139–145 (2008)CrossRefGoogle Scholar
  27. 27.
    Wang, H., Liu, R.L., Jin, J.Y.: Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biol. Plant. 53, 191–194 (2009)CrossRefGoogle Scholar
  28. 28.
    He, J.Y., Ren, Y.F., Zhu, C., Yan, Y.P., Jiang, D.J.: Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46, 466–470 (2008)CrossRefGoogle Scholar
  29. 29.
    Lin, K.H., Hwang, W.C., Lo, H.F.: Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica 45, 628–632 (2007)CrossRefGoogle Scholar
  30. 30.
    Li, X.T., Cao, P., Wang, X.G., Cao, M.J., Yu, H.Q.: Comparison of gas exchange and chlorophyll fluorescence of low-potassium-tolerant and -sensitive soybean [Glycine max (L.) Merr.] cultivars under low-potassium condition. Photosynthetica 49, 633–636 (2011)CrossRefGoogle Scholar
  31. 31.
    Milivojevic, D.B., Nikolic, B.R., Drinik, G.: Effects of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean. Biol. Plant. 50, 149–151 (2006)CrossRefGoogle Scholar
  32. 32.
    Falqueto, A.R., Silva, F.S.P., Cassol, D., Magalhaes Junior, A.M., Oliveira, A.C., Bacarin, M.A.: Chlorophyll fluorescence in rice: probing of senescence driven changes of PSII activity on rice varieties differing in grain yield capacity. Braz. J. Plant Physiol. 22, 35–41 (2010)CrossRefGoogle Scholar
  33. 33.
    Cuchiara, C.C., Silva, I.M.C., Martinazzo, E.G., Braga, E.J.B., Bacarin, M.A., Peters, J.A.: Chlorophyll fluorescence transient analysis in Alternanthera tenella Colla plants grown in nutrient solution with different concentrations of copper. J. Agric. Sci. 5, 8–16 (2013)Google Scholar
  34. 34.
    Kalaji, H.M., Guo, P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs. In: Sanchez, A., Gutierrez, S.J. (eds.) Photochemistry Research Progress, pp. 439–463. Nova Science Publishers, Hauppauge (2008)Google Scholar
  35. 35.
    Desotgiu, R., Pollastrini, M., Cascio, C., Gerosa, G., Marzuoli, R., Bussotti, F.: Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar [Oxford clone] subjected to ozone and water stress. Tree Physiol. 32, 976–986 (2012)CrossRefGoogle Scholar
  36. 36.
    Hussein, M.M., Abdel-Kader, A.A., Kady, K.A., Youssef, R.A., Alva, A.K.: Sorghum response to foliar application of phosphorus and potassium with saline water irrigation. J. Crop Improv. 24, 324–336 (2010)CrossRefGoogle Scholar
  37. 37.
    Begdullayeva, T., Kienzler, K.M., Kan, E., Ibragimov, N., Lamers, J.P.A.: Response of Sorghum bicolor varieties to soil salinity for feed and food production in Karakalpakstan, Uzbekistan. Irrig. Drain. Syst. 21, 237–250 (2007)CrossRefGoogle Scholar
  38. 38.
    Amzallag, G.N.: Perturbed reproductive development in salt-treated Sorghum bicolor: a consequence of modifications in regulation networks? J. Exp. Bot. 56, 2821–2829 (2005)CrossRefGoogle Scholar
  39. 39.
    Srivastava, A., Strasser, R.J., Govindjee: Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 3, 365–392 (1999)CrossRefGoogle Scholar
  40. 40.
    Stefanov, D., Terashima, I.: Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including LNP, FO = F’M, a novel parameter. Physiol. Plant. 133, 327–338 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Parvaneh Sayyad-Amin
    • 1
  • Mohammad-Reza Jahansooz
    • 1
  • Azam Borzouei
    • 2
  • Fatemeh Ajili
    • 2
  1. 1.Department of Agronomy and Plant Breeding, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Agricultural Research SchoolNuclear Science and Technology Research InstituteKarajIran

Personalised recommendations