Journal of Biological Physics

, Volume 42, Issue 3, pp 435–452 | Cite as

Modeling neutralization of Shiga 2 toxin by A-and B-subunit-specific human monoclonal antibodies

Original Paper


A mathematical model for Shiga 2 toxin neutralization by A-and B-subunit-specific human monoclonal antibodies initially delivered in the extracellular domain is presented, taking into account toxin and antibodies interaction in the extracellular domain, diffusion of toxin, antibodies, and their reaction products toward the cell, the receptor-mediated toxin and complex composed of toxin and antibody to A-subunit internalization from the extracellular into the intracellular medium and excretion of this complex back to the extracellular environment via recycling endosomal carriers. The retrograde transport of the intact toxin to the endoplasmic reticulum and its anterograde movement back to the vicinity of the plasma membrane with its subsequent exocytotic removal to the extracellular space via the secretory vesicle pathway is also taken into account. The model is composed of a set of coupled PDEs. A mathematical model based on a system of ODEs for Shiga 2 toxin neutralization by antibodies in the absence of cell is also studied. Both PDE and ODE systems are solved numerically. Numerical results are illustrated by figures and discussed.


Toxin Antibody Cell receptor Microtubule transport Molecular motors 


Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.


  1. 1.
    Jeong, K., Chapman-Bonofiglio, S., Singh, P., Lee, J., Tzipori, S.: In vitro and in vivo protective efficacies of antibodies that neutralize the RNA N-glycosidase activity of Shiga toxin 2. BMC Immunol. 11, 16 (2010)CrossRefGoogle Scholar
  2. 2.
    Krautz-Peterson, G., Chapman-Bonofiglio, S., Boisvert, K., Feng, H., Herman, I.M., Tzipori, S.: Intracellular neutralization of Shiga toxin 2 by an A subunit-specific human monoclonal antibody. Infect. Immun. 76, 1931–1939 (2008)CrossRefGoogle Scholar
  3. 3.
    Boerlin, P., McEwen, S.A., Boerlin-Petzold, F., Wilson, J.B., Johnson, R.P., Gyles, C.L.: Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37, 497–503 (1999)Google Scholar
  4. 4.
    Griffin, P.M., Tauxe, R.V.: The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 13, 60–98 (1991)Google Scholar
  5. 5.
    Milford, D.V., Taylor, C.M., Guttridge, B., Hall, S.M., Rowe, B., Kleanthous, H.: Haemolytic uraemic syndromes in the British Isles 1985-8: association with verocytotoxin producing Escherichia coli. Part 1. Clinical and epidemiological aspects. Arch. Dis. Child 65, 716–721 (1990)CrossRefGoogle Scholar
  6. 6.
    Ostroff, S.M., Tarr, P.I., Neill, M.A., Lewis, J.H., Hargrett-Bean, N., Kobayashi, J.M.: Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli 0197-H7 infections. J. Infect. Dis. 160, 994–998 (1989)CrossRefGoogle Scholar
  7. 7.
    Lingwood, C.A., Law, H., Richardson, S., Petric, M., Brunton, J.L., De Grandis, S., Karmali, M.: Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem. 262, 8834–8839 (1987)Google Scholar
  8. 8.
    Waddell, T., Head, S., Petric, M., Cohen, A., Lingwood, C.: Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem. Biophys. Res. Commun. 152, 674–679 (1988)CrossRefGoogle Scholar
  9. 9.
    Sandvig, K., Van Deurs, B.: Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966 (1996)Google Scholar
  10. 10.
    Garred, O., Dubinina, E., Holm, P.K., Olsnes, S., van Deurs, B., Kozlov, J.V., Sandvig, K.: Role of processing and intracellular transport for optimal toxicity of Shiga toxin and toxin mutants. Exp. Cell Res. 218, 39–49 (1995)CrossRefGoogle Scholar
  11. 11.
    Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., Igarashi, K.: Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171, 45–50 (1988)CrossRefGoogle Scholar
  12. 12.
    Saxena, S.K., O’Brien, A.D., Ackerman, E.J.: Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J. Biol. Chem. 264, 596–601 (1989)Google Scholar
  13. 13.
    Mukherjee, J., Chios, K., Fishwild, D., Hudson, D., O’Donnell, S., Rich, S.M., Donohue-Rolfe, A., Tzipori, S.: Human Stx2-specific monoclonal antibodies prevent systemic complications of Escherichia coli O157:H7 infection. Infect. Immun. 70, 612–619 (2002)CrossRefGoogle Scholar
  14. 14.
    Sheoran, A.S., Chapman-Bonofiglio, B.R., Harvey, B.R., Mukherjee, J., Georgiou, G., Donohue-Rolfe, A., Tzipori, S.: Human antibody against Shiga toxin 2 administered to piglets after the onset of diarrhea due to Escherichia coli O157:H7 prevents fatal systemic complications. Infect. Immun. 73, 4607–4613 (2005)CrossRefGoogle Scholar
  15. 15.
    Tzipori, S., Sheoran, A., Akiyoshi, D., Donohue-Rolfe, A., Trachtman, H.: Antibody therapy in the management of Shiga toxin-induced hemolytic uremic syndrome. Clin. Microbiol. Rev. 17, 926–941 (2004)CrossRefGoogle Scholar
  16. 16.
    Sandvig, K., van Deurs, B.: Transport of protein toxins into cells: pathways used by ricin, cholera toxin, and Shiga toxin. FEBS Lett. 529, 49–53 (2002)CrossRefGoogle Scholar
  17. 17.
    Skakauskas, V., Katauskis, P.: Modelling of toxin-antibody interaction and toxin transport toward the endoplasmic reticulum. J. Biol. Phys. 42, 83–97 (2016)CrossRefGoogle Scholar
  18. 18.
    Smith, D.A., Simmons, R.M.: Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Friedman, A., Cracium, G.: A model of intracellular transport of particles in an axon. J. Math. Biol. 51, 217–246 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Grant, B.D., Donaldson, J.G.: Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009)CrossRefGoogle Scholar
  21. 21.
    Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)CrossRefGoogle Scholar
  22. 22.
    Vale, R.D., Schnapp, B.J., Reese, T.S., Sheetz, M.P.: Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40, 449–454 (1985)CrossRefGoogle Scholar
  23. 23.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: : Molecular Biology of the Cell, 3rd edn. Garland Publishing, New York (1994)Google Scholar
  24. 24.
    Wang, S., Hsu, S.C.: The molecular mechanisms of the mammalian exocyst complex in exocytosis. Biochem. Soc. Trans. 34, 687–690 (2006)CrossRefGoogle Scholar
  25. 25.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: : Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, UK (2007)MATHGoogle Scholar
  26. 26.
    Shampine, L.F., Gladwell, I., Thompson, S., Beardah, C.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge, UK (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)CrossRefMATHGoogle Scholar
  28. 28.
    Truskey, G.A., Yuan, F., Katz, D.F.: Transport Phenomena in Biological Systems, 2nd edn. Pearson Prentice Hall Bioengineering (2009)Google Scholar
  29. 29.
    Lord, J.M., Spooner, R.A.: Ricin trafficking in plant and mammalian cells. Toxins 3, 787–801 (2011)CrossRefGoogle Scholar
  30. 30.
    Van Deurs, B., Sandvig, K., Peterson, O.W., Olsnes, S., Simons, K., Griffiths, G.: Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 106, 253–267 (1988)CrossRefGoogle Scholar
  31. 31.
    Nakajima, H., Kiyokawa, N., Katagiri, Y.U., Taguchi, T., Suzuki, T., Sekino, T., Mimori, K., Ebata, T., Saito, M., Nakao, H., Takeda, T., Fujimoto, J.: Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J. Biol. Chem. 276, 42915–42921 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations