Journal of Biological Physics

, Volume 38, Issue 4, pp 623–635 | Cite as

Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone

  • Nikolaos Kourkoumelis
  • Athina Lani
  • Margaret Tzaphlidou
Original Paper


A model of osteoporosis based on induced inflammation (IMO) was applied on rabbit bones. The structural heterogeneity and molecular complexity of bone significantly affect bone mechanical properties. A tool like Fourier transform infrared spectroscopy, able to analyze both the inorganic and organic phase simultaneously, could provide compositional information regarding cortical and trabecular sections under normal and osteoporotic conditions. In this study, we assessed the mineral/matrix ratio, carbonate and phosphate content and labile (i.e., non-apatitic) species contribution to bone mineral and collagen cross-linking patterns. Clear differences were observed between cortical and trabecular bone regarding mineral and carbonate content. Induced inflammation lowers the mineral/matrix ratio and increases the overall carbonate accumulation. Elevated concentrations of labile species were detected in osteoporotic samples, especially in the trabecular sections. Collagen cross-linking patterns were indirectly observed through the 1660/1690 cm − 1 ratio in the amide I band and a positive correlation was found with the mineralization index. Principal component analysis (PCA) applied to female samples successfully clustered trabecular and osteoporotic cases. The important role played by the phosphate ions was confirmed by corresponding loadings plots. The results suggest that the application of the IMO model to rabbit bones effectively alters bone remodeling and forms an osteoporotic bone matrix with a dissimilar composition compared to the normal one.


Fourier transform infrared spectroscopy Bone composition Osteoporosis Inflammation-mediated osteoporosis Apatite Rabbit bone PCA analysis 


  1. 1.
    Rachner, T.D., Khosla, S., Hofbauer, L.C.: Osteoporosis: now and the future. Lancet 377, 1276–1287 (2011)CrossRefGoogle Scholar
  2. 2.
    Kanis, J.A., Alexeeva, L., Bonjour, J.P., Burkhardt, P., Christiansen, C., Cooper, C., Delmas, P., Johnell, O., Johnston, C., Kanis, J.A., Khaltaev, N., Lips, P., Mazzuoli, G., Melton, L.J., Meunier, P., Seeman, E., Stepan, J., Tosteson, A.: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis - synopsis of a WHO report. Osteoporosis Int. 4, 368–381 (1994)CrossRefGoogle Scholar
  3. 3.
    De Laet, C.E.D.H., van Hout, L.B., Burger, H., Hofman, A., Pols, H.A.P.: Bone density and risk of hip fracture in men and women: cross-sectional analysis. Brit. Med. J. 315, 221–225 (1997)CrossRefGoogle Scholar
  4. 4.
    Schuit, S.C.E., van der Klift, M., Weel, A.E.A.M., de Laet, C.E.D.H., Burger, H., Seeman, E., Hofman, A., Uitterlinden, A.G., van Leeuwen, J.P.T.M., Pols, H.A.P.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34, 195–202 (2004)CrossRefGoogle Scholar
  5. 5.
    Bouxsein, M.L., Seeman, E.: Quantifying the material and structural determinants of bone strength. Best Pract. Res. Clin. Rheumatol. 23, 741–753 (2009)CrossRefGoogle Scholar
  6. 6.
    McCreadie, B.R., Goldstein, S.A.: Biomechanics of fracture: is bone mineral density sufficient to assess risk? J. Bone Miner. Res. 15, 2305–2308 (2000)CrossRefGoogle Scholar
  7. 7.
    Black, D.M., Bouxsein, M.L., Marshall, L.M., Cummings, S.R., Lang, T.F., Cauley, J.A., Ensrud, K.E., Nielson, C.M., Orwoll, E.S., Res, O.F.M.M.: Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Miner. Res. 23, 1326–1333 (2008)CrossRefGoogle Scholar
  8. 8.
    Bouxsein, M.L.: Bone quality: where do we go from here? Osteoporosis Int. 14, S118–S127 (2003)CrossRefGoogle Scholar
  9. 9.
    Farlay, D., Boivin, G.: Bone Mineral Quality. InTech Press (2012). doi: 10.5772/29091
  10. 10.
    Chappard, D., Basle, M.F., Legrand, E., Audran, M.: New laboratory tools in the assessment of bone quality. Osteoporosis Int. 22, 2225–2240 (2011)CrossRefGoogle Scholar
  11. 11.
    Seeman, E., Delmas, P.D.: Bone quality - The material and structural basis of bone strength and fragility. New Engl. J. Med. 354, 2250–2261 (2006)CrossRefGoogle Scholar
  12. 12.
    Felsenberg, D., Boonen, S.: The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin. Ther. 27, 1–11 (2005)CrossRefGoogle Scholar
  13. 13.
    Ruppel, M.E., Burr, D.B., Miller, L.M.: Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39, 318–324 (2006)CrossRefGoogle Scholar
  14. 14.
    Melton, L.J., Atkinson, E.J., O’Fallon, W.M., Wahner, H.W., Riggs, B.L.: Long-term fracture prediction by bone mineral assessed at different skeletal sites. J. Bone Miner. Res. 8, 1227–1233 (1993)CrossRefGoogle Scholar
  15. 15.
    Riggs, B.L., Hodgson, S.F., O’Fallon, W.M., Chao, E.Y.S., Wahner, H.W., Muhs, J.M., Cedel, S.L., Melton, L.J.: Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New Engl. J. Med. 322, 802–809 (1990)CrossRefGoogle Scholar
  16. 16.
    Zaichick, S., Zaichick, V.: Neutron activation analysis of trace element contents in the bone samples of human iliac crest. In: 17th International Seminar on Interaction of Neutrons with Nuclei: “Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics” (2009)Google Scholar
  17. 17.
    Milovanovic, P., Potocnik, J., Stoiljkovic, M., Djonic, D., Nikolic, S., Neskovic, O., Djuric, M., Rakocevic, Z.: Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: implications for bone fragility in elderly women. Acta Biomater. 7, 3446–3451 (2011)CrossRefGoogle Scholar
  18. 18.
    van der Harst, M.R., Brama, P.A.J., van de Lest, C.H.A., Kiers, G.H., DeGroot, J., van Weeren, P.R.: An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone. Osteoarthr. Cartilage 12, 752–761 (2004)CrossRefGoogle Scholar
  19. 19.
    Marcus, R., Feldman, D., Nelson, D., Rosen, C.J. (eds): Fundamentals of Osteoporosis. Academic Press (2009)Google Scholar
  20. 20.
    Hu, Y.Y., Rawal, A., Schmidt-Rohr, K.: Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 107, 22425–22429 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Currey, J.D.: Bones: Structure and Mechanics. Princeton University Press, NJ (2006)Google Scholar
  22. 22.
    Milovanovic, P., Potocnik, J., Djonic, D., Nikolic, S., Zivkovic, V., Djuric, M., Rakocevic, Z.: Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM. Exp. Gerontol. 47, 154–159 (2012)CrossRefGoogle Scholar
  23. 23.
    Belbachir, K., Noreen, R., Gouspillou, G., Petibois, C.: Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 395, 829–837 (2009)CrossRefGoogle Scholar
  24. 24.
    Yamauchi, M.: Collagen: The major matrix molecule in mineralized tissues. In: Anderson, J.J.B., Garner, S.C. (eds.) Calcium and Phosphorus in Health and Disease. CRC Press, NY (1996)Google Scholar
  25. 25.
    Young, M.F.: Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporosis Int. 14, S35–S42 (2003)Google Scholar
  26. 26.
    Thurner, P.J.: Atomic force microscopy and indentation force measurement of bone. WIREs Nanomed. Nanobiotechnol. 1, 624–649 (2009)CrossRefGoogle Scholar
  27. 27.
    Armour, K.J., Armour, K.E.: Methods in Molecular Medicine, vol. 80: Bone Research Protocols: Inflammation-Induced Osteoporosis, The IMO Model. Humana Press Inc., Totowa, NJ (2003)Google Scholar
  28. 28.
    Oelzner, P., Muller, A., Deschner, F., Huller, M., Abendroth, K., Hein, G., Stein, G.: Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcified Tissue Int. 62, 193–198 (1998)CrossRefGoogle Scholar
  29. 29.
    Andreassen, H., Rungby, J., Dahlerup, J.F., Mosekilde, L.: Inflammatory bowel disease and osteoporosis. Scand. J. Gastroenterol. 32, 1247–1255 (1997)CrossRefGoogle Scholar
  30. 30.
    Speller, R., Pani, S., Tzaphlidou, M., Horrocks, J.: MicroCT analysis of calcium/phosphorus ratio maps at different bone sites. Nucl. Instrum. Methods A 548, 269–273 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Kourkoumelis, N., Balatsoukas, I., Tzaphlidou, M.: Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J. Biol. Phys. 38, 279–291 (2012)CrossRefGoogle Scholar
  32. 32.
    Turner, A.S.: Animal models of osteoporosis - necessity and limitations Eur. Cells Mater. 1, 66–81 (2001)Google Scholar
  33. 33.
    Norris, S.A., Pettifor, J.M., Gray, D.A., Buffenstein, R.: Calcium metabolism and bone mass in female rabbits during skeletal maturation: effects of dietary calcium intake. Bone 29, 62–69 (2001)CrossRefGoogle Scholar
  34. 34.
    Bonjour, J.P., Ammann, P., Rizzoli, R.: Importance of preclinical studies in the development of drugs for treatment of osteoporosis: a review related to the 1998 WHO guidelines. Osteoporosis Int. 9, 379–393 (1999)CrossRefGoogle Scholar
  35. 35.
    Duque, G., Watanabe, K. (eds.): Osteoporosis Research Animal Models. Springer (2011)Google Scholar
  36. 36.
    Nakamoto, K.: Infrared spectra of Inorganic and Coordination Compounds, 6th edn. Wiley-Interscience (2009)Google Scholar
  37. 37.
    Bigi, A., Cojazzi, G., Panzavolta, S., Ripamonti, A., Roveri, N., Romanello, M., Suarez, K.N., Moro, L.: Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 68, 45–51 (1997)CrossRefGoogle Scholar
  38. 38.
    Rey, C., Collins, B., Goehl, T., Dickson, I.R., Glimcher, M.J.: The carbonate environment in bone mineral. A resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue Int. 45, 157–164 (1989)CrossRefGoogle Scholar
  39. 39.
    Boskey, A., Camacho, N.P.: FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28, 2465–2478 (2007)CrossRefGoogle Scholar
  40. 40.
    Huang, R. Y. , Miller, L.M., Carlson, C.S., Chance, M.R.: In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33, 514–521 (2003)CrossRefGoogle Scholar
  41. 41.
    Rey, C., Shimizu, M., Collins, B., Glimcher, M.J.: Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel, and their evolution with age. 1. Investigations in the v4 PO4 domain. Calcified Tissue Int. 46, 384–394 (1990)CrossRefGoogle Scholar
  42. 42.
    Paschalis, E.P., Mendelsohn, R., Boskey, A.L.: Infrared assessment of bone quality: a review. Clin. Orthop. Relat. Res. 469, 2170–2178 (2011)CrossRefGoogle Scholar
  43. 43.
    Turner, C.H., Hinckley, W.R., Wilson, M.E., Zhang, W., Dunipace, A.J.: Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcified Tissue Int. 69, 51–57 (2001)CrossRefGoogle Scholar
  44. 44.
    Gadeleta, S.J., Boskey, A.L., Paschalis, E., Carlson, C., Menschik, F., Baldini, T., Peterson, M., Rimnac, C.M.: A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27, 541–550 (2000)CrossRefGoogle Scholar
  45. 45.
    Paschalis, E.P., Betts, F., DiCarlo, E., Mendelsohn, R., Boskey, A.L.: FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcified Tissue Int. 61, 487–492 (1997)CrossRefGoogle Scholar
  46. 46.
    Boivin, G.Y., Chavassieux, P.M., Santora, A.C., Yates, J., Meunier, P.J.: Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27, 687–694 (2000)CrossRefGoogle Scholar
  47. 47.
    Kourkoumelis, N., Tzaphlidou, M.: Spectroscopic assessment of normal cortical bone: differences in relation to bone site and sex. TheScientificWorld J. 10, 402–412 (2010). doi: 10.1100/tsw.2010.43 CrossRefGoogle Scholar
  48. 48.
    Wu, Y.T., Ackerman, J.L., Kim, H.M., Rey, C., Barroug, A., Glimcher, M.J.: Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J. Bone Miner. Res. 17, 472–480 (2002)CrossRefGoogle Scholar
  49. 49.
    Balatsoukas, I., Kourkoumelis, N., Tzaphlidou, M.: Auger electron spectroscopy for the determination of sex- and age-related Ca/P ratio at different bone sites. J. Appl. Phys. 108, 074701 (2010). doi: 10.1063/1.3490118 CrossRefGoogle Scholar
  50. 50.
    De Laet, C.E.D.H., van Hout, L.B., Burger, H., Hofman, A., Pols, H.A.P.: Bone density and risk of hip fracture in men and women: cross-sectional analysis. Brit. Med. J. 315, 221–225 (1997)CrossRefGoogle Scholar
  51. 51.
    Miller, L.M., Vairavamurthy, V., Chance, M.R., Mendelsohn, R., Paschalis, E.P., Betts, F., Boskey, A.L.: In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v(4) PO4 3 −  vibration. Biochim. Biophys. Acta 1527, 11–19 (2001)CrossRefGoogle Scholar
  52. 52.
    Isaksson, H., Turunen, M.J., Rieppo, L., Saarakkala, S., Tamminen, I.S., Rieppo, J., Kroger, H., Jurvelin, J.S.: Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J. Bone Miner. Res. 25, 1360–1366 (2010)CrossRefGoogle Scholar
  53. 53.
    Biltz, R.M., Pellegrino, D.: The nature of bone carbonate. Clin Orthopaed Related Res. 129, 279–92 (1977)Google Scholar
  54. 54.
    Goodyear, S.R., Gibson, I.R., Skakle, J.M.S., Wells, R.P.K., Aspden, R.M.: A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44, 899–907 (2009)CrossRefGoogle Scholar
  55. 55.
    Huang, R.Y., Miller, L.M., Carlson, C.S., Chance, M.R.: Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone 30, 492–497 (2002)CrossRefGoogle Scholar
  56. 56.
    Boskey, A.L., DiCarlo, E., Paschalis, E., West, P., Mendelsohn, R.: Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporosis Int. 16, 2031–2038 (2005)CrossRefGoogle Scholar
  57. 57.
    Bohic, S., Rey, C., Legrand, A., Sfihi, H., Rohanizadeh, R., Martel, C., Barbier, A., Daculsi, G.: Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone 26, 341–348 (2000)CrossRefGoogle Scholar
  58. 58.
    Paschalis, E.P., DiCarlo, E., Betts, F., Sherman, P., Mendelsohn, R., Boskey, A.L.: FTIR microspectroscopic analysis of human osteonal bone. Calcified Tissue Int. 59, 480–487 (1996)Google Scholar
  59. 59.
    Krempien, B., Vukicevic, S., Vogel, M., Stavljenic, A., Buchele, R.: Cellular basis of inflammation induced osteopenia in growing rats. J. Bone Miner. Res. 3, 573–582 (1988)CrossRefGoogle Scholar
  60. 60.
    Paschalis, E.P., Verdelis, K., Doty, S.B., Boskey, A.L., Mendelsohn, R., Yamauchi, M.: Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16, 1821–1828 (2001)CrossRefGoogle Scholar
  61. 61.
    Oxlund, H., Barckman, M., Ortoft, G., Andreassen, T.T.: Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17, S365–S371 (1995)Google Scholar
  62. 62.
    Suarez, K.N., Romanello, M., Bettica, P., Moro, L.: Collagen type I of rat cortical and trabecular bone differs in the extent of posttranslational modifications. Calcified Tissue Int. 58, 65–69 (1996)CrossRefGoogle Scholar
  63. 63.
    Bätge, B., Diebold, J., Stein, H., Bodo, M., Müller, P.K.: Compositional analysis of the collagenous bone matrix. A study on adult normal and osteopenic bone tissue. Eur. J. Clin. Invest. 22, 805–812 (1992)CrossRefGoogle Scholar
  64. 64.
    Huang, R.Y., Miller, L.M., Carlson, C.S., Chance, M.R.: In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone 33, 514–521 (2003)CrossRefGoogle Scholar
  65. 65.
    Knott, L., Bailey, A.J.: Collagen biochemistry of avian bone: comparison of bone type and skeletal site. Brit. Poultry Sci. 40, 371–379 (1999)CrossRefGoogle Scholar
  66. 66.
    Farlay, D., Duclos, M.E., Gineyts, E., Bertholon, C., Viguet-Carrin, S., Nallala, J., Sockalingum, G.D., Bertrand, D., Roger, T., Hartmann, D.J., Chapurlat, R., Boivin, G.: The ratio 1660/1690 cm − 1 measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS ONE 6(12), e28736 (2011). doi: 10.1371/journal.pone.0028736 CrossRefGoogle Scholar
  67. 67.
    Kourkoumelis, N., Tzaphlidou, M.: Multivariate statistical evaluation of bone site and sex as parameters for the Fourier transform infrared spectroscopic study of normal bone. Spectroscopy 24, 99–104 (2010). doi: 10.3233/SPE-2010-0427 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nikolaos Kourkoumelis
    • 1
  • Athina Lani
    • 1
  • Margaret Tzaphlidou
    • 1
  1. 1.Department of Medical Physics, Medical SchoolUniversity of IoanninaIoanninaGreece

Personalised recommendations