Journal of Biological Physics

, Volume 38, Issue 1, pp 85–95 | Cite as

Terahertz vibrational properties of water nanoclusters relevant to biology

  • Keith Johnson
Original Paper


Water nanoclusters are shown from first-principles calculations to possess unique terahertz-frequency vibrational modes in the 1–6 THz range, corresponding to O–O–O “bending,” “squashing,” and “twisting” “surface” distortions of the clusters. The cluster molecular-orbital LUMOs are huge Rydberg-like “S,” “P,” “D,” and “F” orbitals that accept an extra electron via optical excitation, ionization, or electron donation from interacting biomolecules. Dynamic Jahn–Teller coupling of these “hydrated-electron” orbitals to the THz vibrations promotes such water clusters as vibronically active “structured water” essential to biomolecular function such as protein folding. In biological microtubules, confined water-cluster THz vibrations may induce their “quantum coherence” communicated by Jahn–Teller phonons via coupling of the THz electromagnetic field to the water clusters’ large electric dipole moments.


Water clusters Terahertz Vibrational Vibronic 


  1. 1.
    Teeter, M.M.: Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc. Natl. Acad. Sci. U. S. A. 81, 6014–6018 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    Chaplin, M.: Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 7, 861–866 (2006)CrossRefGoogle Scholar
  3. 3.
    Carlon, H.R., Harden, C.S.: Mass spectrometry of ion-induced water clusters: an explanation of the infrared continuum absorption. Appl. Opt. 19, 1776–1786 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Aplin, K.L., McPheat, R.A.: Absorption of infra-red radiation by atmospheric molecular cluster-ions. J. Atmos. Sol.-Terr. Phys. 67, 775–783 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Duley, W.W.: Molecular clusters in interstellar clouds. Astrophys. J. Lett. 471, L57 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Keutsch, F.N., Saykally, R.J.: Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc. Natl. Acad. Sci. U. S. A. 98, 10533–10540 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Johnson, K.H., Price-Gallagher, M., Mamer, O., Lesimple, A., Fletcher, C., Chen, Y., Lu, X., Yamaguchi, M., Zhang, X.-C: Water vapor: an extraordinary terahertz wave source under optical excitation. Phys. Lett. A 372, 6037–6040 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Tsuchiya, M., Tashiro, T., Shigihara, A.: Water clusters in gas phases studied by liquid ionization mass spectrometry: J. Mass Spectrom. Soc. Jpn. 52, 1–12 (2004)Google Scholar
  9. 9.
    Shin, J.-W., Hammer, N.I., Diken, E.G., Johnson, M.A., Walters, R.S., Jaeger, T.D., Duncan, M.A., Christie, R.A., Jordan, K.D.: Infrared signature of structures associated with the H + (H2O)n (n = 6 to 27) clusters. Science 304, 1137–1140 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Miyazaki, M., Fujii, A., Ebata, T., Mikami, N.: Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Brudermann, J., Lohbrandt, P., Buck, U.: Surface vibrations of large water clusters by He atom scattering. Phys. Rev. Lett. 80, 2821–2824 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Arnold, S.T., Morris, R.A., Viggiano, A.A.: Thermal energy reactions of size selected hydrated electron clusters (H2O)\(_{\rm n}^{-}\) . J. Phys. Chem. 100, 2900–2906 (1996)CrossRefGoogle Scholar
  13. 13.
    Bersuker, I.B., Polinger, V.Z.: Vibronic Interactions in Molecules and Crystals. Springer, Berlin (1989)CrossRefGoogle Scholar
  14. 14.
    Johnson, K.H., Clougherty, D.P., McHenry, M.E.: Fullerene superconductivity and the dynamic Jahn–Teller effect. Science 255, 1490 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    Johnson, K.H.: Water clusters and uses therefor. U.S. Patent No. 5,800,576 (1998); Stabilized water nanocluster-fuel emulsions designed through quantum chemistry. U.S. Patent No. 5,997,590 (1999)Google Scholar
  16. 16.
    Daviss, B.: Just add water. New Sci. 161, 36–39 (1999)Google Scholar
  17. 17.
    Fritsch, G., Kampmann, L., Kapaun, G., Michel, H.: Water clusters in the reaction centre of Rhodobacter sphaeroides. Photosynth. Res. 55, 127–132 (1998)CrossRefGoogle Scholar
  18. 18.
    Gebbie, H. A. : Resonant absorption by water polymers in the atmosphere. Nature 296, 422–424 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    Neidle, S., Berman, H.M., Shieh, H.S.: Highly structured water network in crystals of deoxydinucleoside-drug complex. Nature 288, 129–133 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    Watterson, J.G.: The role of water in cell architecture. Mol. Cell. Biochem. 79, 101–105 (1988)CrossRefGoogle Scholar
  21. 21.
    Bowden, G.T., Roberts, R., Alberts, D.S., Peng, Y.M., Garcia, D.: Comparative molecular pharmacology of anthracene anticancer drugs. Cancer Res. 45, 4915–4920 (1985)Google Scholar
  22. 22.
    Frohlich, H.: Long range coherence and the action of enzymes. Nature 228, 1093 (1970)ADSCrossRefGoogle Scholar
  23. 23.
    Hameroff, S.R., Penrose, R.: Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. In: Hameroff, S.R., Kaszniak, A.W., Scott, A.C. (eds.) Toward a science of consciousness: The first Tucson discussions and debates, pp. 509–540. MIT, Tucson (1996)Google Scholar
  24. 24.
    Reiter, G.F., Kolesnikov, A.I., Paddison, S.J., Platzman, P.M., Moravsky, A.P., Adams, M.A., Mayers, J.: Evidence of a new quantum state of nano-confined water. arxiv.1101.4994v1 [cond-mat.mes-hall] 26 Jan. (2011)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.HydroElectron Ventures Inc.WestmountCanada

Personalised recommendations