Advertisement

Journal of Biological Physics

, Volume 33, Issue 3, pp 183–194 | Cite as

Effects of Exogenous Electromagnetic Fields on a Simplified Ion Channel Model

  • E. Cagni
  • D. Remondini
  • P. Mesirca
  • G. C. Castellani
  • E. Verondini
  • F. Bersani
Research Paper

Abstract

In this paper, we calculate the effect of an exogenous perturbation (an electromagnetic field [EMF] oscillating in the range of microwave frequencies in the range of 1 GHz) on the flux of two ion species through a cylindrical ion channel, implementing a continuous model, the Poisson–Smoluchowski system of equations, to study the dynamics of charged particle density inside the channel. The method was validated through comparison with Brownian dynamics simulations, supposed to be more accurate but computationally more demanding, obtaining a very good agreement. No EMF effects were observed for low field intensities below the level for thermal effects, as the highly viscous regime and the simplicity of the channel do not exhibit resonance phenomena. For high intensities of the external field (>105 V/m), we observed slightly different behavior of ion concentration oscillations and ion currents as a function of EMF orientation with respect to the channel axis.

Keywords

Ion channel modeling Electromagnetic field effects Poisson–Smoluchowski equations IV curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polk, C., Postow, E. (eds.): Biological Effects of Electromagnetic Fields. CRC Press (1996)Google Scholar
  2. 2.
    Cranfield, C.G., Wood, A.W., Anderson, V., Menezes, K.G.: Effects of mobile phone type signals on calcium levels within human leukaemic T-cells (Jurkat cells). Int. J. Radiat. Biol. 77(12), 1207–1217 (2001)CrossRefGoogle Scholar
  3. 3.
    Apollonio, F., D’Inzeo, G., Tarricone, L.: Modelling of neuronal cells exposed to RF fields from mobile telecommunication equipment. Bioelectrochem. Bioenerg. 47(2), 199–205 (1998)CrossRefGoogle Scholar
  4. 4.
    Laio, A., Torre, V.: Physical origin of selectivity in ionic channels of biological membranes. Biophys. J. 76, 129–148 (1999)ADSGoogle Scholar
  5. 5.
    Corry, B., Chung, S.H.: Mechanisms of valence selectivity in biological ion channels. Cell. Mol. Life Sci. 63, 301–315 (2006)CrossRefGoogle Scholar
  6. 6.
    Kurnikova, M.G., Coalson, R.D., Graf, P., Nitzan, A.: A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76, 642–656 (1999)Google Scholar
  7. 7.
    Corry, B.T., Kuyucak, S., Chung, S.H.: Test of continuum theories as models of ion channels. II Poisson–Nernst–Planck theory versus Brownian dynamics. Biophys. J. 78, 2364–2381 (2000)Google Scholar
  8. 8.
    Corry, B., Vora, T., Chung, S.H.: Electrostatic basis of valence sensitivity in cationic channels. Biochimica et Biophysica Acta 1711, 72–86 (2005)CrossRefGoogle Scholar
  9. 9.
    Stoykov, N.S., Jerome, J.W., Pierce, L.C., Taflove, A.: Computational modeling evidence of a nonthermal electromagnetic interaction mechanism with living cells: microwave nonlinearity in the cellular sodium ion channel. IEEE Transactions on microwave theory and techniques, 52(8), 2040–2045 (2004)CrossRefGoogle Scholar
  10. 10.
    Gardiner, C.W.: Handbook of Stochastic Methods. Springer-Verlag, Berlin (1985)Google Scholar
  11. 11.
    Sansom, M.S.P., Smith, G.R., Adcock, C., Biggin, P.C.: The dielectric properties of water within model transbilayer pores. Biophys. J. 73, 2404–2415 (1997)CrossRefGoogle Scholar
  12. 12.
    Risken, H.: The Fokker Planck Equation. Springer, Berlin (1984)MATHGoogle Scholar
  13. 13.
    Chiabrera, A., Bianco, B., Moggia, E., Kaufman, J.J.: Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 21(4), 312–324 (2000)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, The Art of Scientific Computing. Cambrige University Press (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. Cagni
    • 1
  • D. Remondini
    • 1
    • 2
    • 3
  • P. Mesirca
    • 1
    • 2
  • G. C. Castellani
    • 1
    • 2
    • 3
    • 4
  • E. Verondini
    • 1
    • 2
  • F. Bersani
    • 1
    • 2
  1. 1.Dipartimento di FisicaBolognaItaly
  2. 2.Centro Interdipartimentale “L. Galvani” CIGBolognaItaly
  3. 3.INFN Sezione di BolognaBolognaItaly
  4. 4.DiMorFiPABolognaItaly

Personalised recommendations