Journal of Biological Physics

, Volume 32, Issue 6, pp 473–488 | Cite as

Ribozymes: Analytical Solution of the One-substrate, Two-intermediate Reversible Scheme for Enzyme Reactions

  • Paolo Toti
  • Ludovico Sbordone
  • Carolina Sbordone
  • Carlo Bauer
Original Paper


The paper presents a kinetic analysis of a reversible enzymatic reaction S⇄P involving two intermediate compounds under the condition [E]0 ≫ [S]0 + [P]0. For the case of mono-exponential behavior, we derive an equation for k obs as a function of [E]0, which emphasizes the pitfalls of oversimplifying kinetic schemes (such as the Michaelis-Menten model) for ribozyme studies. This novel apparent rate constant, which has been arrived at through mechanistic considerations, is analyzed, and the characteristic parameters obtained. The equation, which seems to fit experimental data better than conventional approximations, is used to analyze a single turnover study on an ADC1 ribozyme drawn from hepatitis delta virus RNA. The microscopic kinetic constants for such enzyme are evaluated and its mono-exponential behavior verified.

Key words

ribozyme kinetics Michaelis-Menten low catalytic enzyme kinetic analysis single turnover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Segel, L.H.: Enzyme Kinetics, pp. 54–64. Wiley, New York (1975)Google Scholar
  2. 2.
    Waley, S.G.: Kinetics of suicide substrates. Biochem. J. 185, 771–773 (1980)Google Scholar
  3. 3.
    Waley, S.G.: Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem. J. 227, 843–849 (1985)Google Scholar
  4. 4.
    Tudela, J., García-Cánovas, F., Varón, R., García-Carmona, F., Gálvez, J., Lozano, J.A.: Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim. Biophys. Acta 912, 408–416 (1987)Google Scholar
  5. 5.
    Swoboda, P.A.T.: The kinetics of enzyme action. Biochim. Biophys. Acta 23, 70–81 (1957)CrossRefGoogle Scholar
  6. 6.
    Ignetik, R., Deakin, M.A.B.: Asymptotic analysis of the Michaelis-Menten reaction equations. Bull. Math. Biol. 43, 375–388 (1981)MATHMathSciNetGoogle Scholar
  7. 7.
    Tzafriri, A.R.: Michaelis-Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)CrossRefGoogle Scholar
  8. 8.
    Tzafriri, A.R., Edelman, E.R.J.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Varon, R., Garrido-del Solo, C., Garcia-Moreno, M., Garcia Canovas, F., Moya-Garcia, G., Vidal de Labra, J., Havsteen, B.H.: Kinetics of enzyme systems with unstable suicide substrates. Biosystems 47, 177–192 (1998)CrossRefGoogle Scholar
  10. 10.
    Shih, I., Been, M.D.: Kinetic scheme for intermolecular RNA cleavage by a ribozyme derived from hepatitis delta virus RNA. Biochemistry 39, 9055–9066 (2000)CrossRefGoogle Scholar
  11. 11.
    Victoria, J., DeRose, V.J.: Two decades of RNA catalysis. Chem. Biol. 9, 961–969 (2002)CrossRefGoogle Scholar
  12. 12.
    Bergman, N.H, Johnston, W.K., Bartel, D.P.: Kinetic framework for ligation by an efficient RNA ligase ribozyme. Biochemistry 39, 3115–3123 (2000)CrossRefGoogle Scholar
  13. 13.
    Kurz, J.K., Niranjanakumari, S., Fierke, C.A.: Protein component of bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNA. Biochemistry 37, 2393–2400 (1998)CrossRefGoogle Scholar
  14. 14.
    Oh, B.K., Frank, D.N., Pace, N.R.: Participation of the 3′-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P. Biochemistry 37, 7277–7283 (1998)CrossRefGoogle Scholar
  15. 15.
    Siew, D., Zahler, N.H., Cassano, A.G., Strobel, S.A., Harris, M.E.: Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Biochemistry 38, 1873–1883 (1999)CrossRefGoogle Scholar
  16. 16.
    Jeong, S., Sefcikova, J., Tinsley, R.A., Rueda, D., Nils, G., Walter, N.G.: Trans-acting hepatitis delta virus ribozyme: Catalytic core and global structure are dependent on the 5′ substrate sequence. Biochemistry 42, 7727–7740 (2003)CrossRefGoogle Scholar
  17. 17.
    Kaye, N.M., Christian, E.L., Harris, M.E.: NAIM and site-specific functional group modification analysis of RNase P RNA: Magnesium dependent structure within the conserved P1–P4 multihelix junction contributes to catalysis. Biochemistry 41, 4533–4545 (2002)CrossRefGoogle Scholar
  18. 18.
    Schenter, G.K., Lu, H.P., Xie, X.S.: Statistical analysis and theoretical models of single-molecule enzymatic dynamics. J. Phys. Chem. 103, 10477–10488 (1999)Google Scholar
  19. 19.
    Laidler, K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)CrossRefGoogle Scholar
  20. 20.
    Galvez, J.R., Varon, R., Carmona, F.G.: III kinetics of enzyme reactions with inactivation steps. J. Theor. Biol. 89, 37–44 (1981)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Harris, D.A., Rueda, D., Walter, N.G.: Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41, 12051–12061 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Paolo Toti
    • 1
  • Ludovico Sbordone
    • 2
  • Carolina Sbordone
    • 3
  • Carlo Bauer
    • 1
  1. 1.Unità di Biochimica, Dipartimento di BiologiaUniversità di PisaPisaItaly
  2. 2.Dipartimento di ChirurgiaUniversità di PisaPisaItaly
  3. 3.Facoltà di Medicina e ChirurgiaUniversità di Napoli Federico IINapoliItaly

Personalised recommendations