Skip to main content
Log in

Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods (NRs) with high transmittance and low resistance were produced on glass substrates in two steps. Initially, a ZnO seed layer was produced via sol–gel spin coating and heat treatment, and in the second step ZnO-NRs were grown on the ZnO seed layer via hydrothermal growth. The ZnO samples were identified by XRD. Average crystallite sizes were found to be 45 and 60 nm, for the ZnO seed layer and the ZnO-NRs, respectively, from XRD results using the Scherrer formula. Average grain sizes of the ZnO thin films were determined with FE-SEM and found to be 62 and 68 nm for the ZnO seed layer and the ZnO-NRs, respectively. The ZnO-NRs were very dense when grown to a (film) thickness exceeding that of the seed layer. After the growth of the ZnO-NRs, the starting thickness of ZnO seed layer was reduced from 360 to 60 nm. This revealed that the ZnO-NRs’ growth consumes the sol–gel deposited ZnO seed layer significantly, which in turn affects the NR array’s properties. The electrical conductivity values of the ZnO seed layer and ZnO-NRs/ZnO seed structure films were measured as 6.98 × 10−9 and 2.08 × 10−8 Ω−1 cm−1 at 25 °C, and 9.31 × 10−8 and 8.99 × 10−7 Ω−1 cm−1 at 300 °C, respectively. In other words, the ZnO-NRs/ZnO seed structure had higher electrical conductivity than the starting ZnO seed layer alone. In agreement, the ZnO-NRs/ZnO seed structure had a much higher transmittance (80–90% in the UV–Vis range) than the starting seed layer. These suggested that the ZnO-NRs has better crystal quality with lower defects along their length and hence the seed layer consumption is a benefical factor in obtaining ZnO NR arrays with high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from [19]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Han, F. Wang, J.C. Ho, Nanomater. Energy 1, 4 (2011)

    Article  Google Scholar 

  2. R.H. Horng, S.L. Ou, C.Y. Huang, P. Ravadgar, C.I. Wu, Thin Solid Films 605, 30 (2016)

    Article  Google Scholar 

  3. M.D. Reyes Tolosa, J. Orozco-Messana, A.N.C. Lima, R. Camaratta, M. Pascual, M.A. Hernandez-Fenollosa, J. Electrochem. Soc. 158, E107 (2011)

    Article  Google Scholar 

  4. J.C. Sun, J.Z. Zhao, H.W. Liang, J.M. Bian, L.Z. Hu, H.Q. Zhang, X.P. Liang, W.F. Liu, G.T. Du, Appl. Phys. Lett. 90, 121 (2007)

    Google Scholar 

  5. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  6. P.N. Mbuyisa, O.M. Ndwandwe, C. Cepek, Thin Solid Films 578, 7 (2015)

    Article  Google Scholar 

  7. N. Huang, M.W. Zhub, L.J. Gaoa, J. Gonga, C. Suna, X. Jiang, Appl. Surf. Sci. 257, 6026 (2011)

    Article  Google Scholar 

  8. S. Kim, G. Nam, H. Park, H. Yoon, S.-H. Lee, J.S. Kim, J.S. Kim, D.Y. Kim, S.O. Kim, J.Y. Leem, Bull. Korean Chem. Soc. 34, 1205 (2013)

    Article  Google Scholar 

  9. Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, Materials 6, 3584 (2013)

    Article  Google Scholar 

  10. L.W. Brooks, J.M. Mativetsky, A. Woll, D. Smilgies, Y.L. Loo, Org. Electron. 14, 3477 (2013)

    Article  Google Scholar 

  11. S.Y. Pung, K.L. Choy, X. Hou, C. Shan, Nanotechnology 19, 435609 (2008)

    Article  Google Scholar 

  12. T.A.N. Peiris, H. Alessa, J.S. Sagu, I.A. Bhatti, P. Isherwood, K.G.U. Wijayantha, J. Nanopart. Res. 15, 2115 (2015)

    Article  Google Scholar 

  13. S. Saini, P. Mele, H. Honda, T. Suzuki, K. Matsumoto, K. Miyazaki, A. Ichinose, L.M. Luna, R. Carlini, A. Tiwari, Thin Solid Films 605, 289 (2016)

    Article  Google Scholar 

  14. H.G. Chen, Z.W. Li, Appl. Surf. Sci. 258, 556 (2011)

    Article  Google Scholar 

  15. J. Zhang, W. Que, Sol. Energy. Mater. Sol. C 94, 2181 (2010)

    Article  Google Scholar 

  16. C. Zhang, J. Phys. Chem. Solids 71, 364 (2010)

    Article  Google Scholar 

  17. Y.C. Yoon, K.S. Park, S.D. Kim, Thin Solid Films 597, 125 (2015)

    Article  Google Scholar 

  18. P. Singh, A. Nanda, Synth. React. Inorg. Met. 45, 1121 (2015)

    Article  Google Scholar 

  19. J.D. Major, R.T. Zaera, E. Azaceta, L. Bowen, K. Durose, Sol. Energy Mater. Sol. C 160, 107 (2017)

    Article  Google Scholar 

  20. G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurangb, S. Yerci, H.E. Unalan, V. Barrioz, Y. Qu, L. Bowen, A.K. Gürlek, P. Maiello, R. Turan, S.J.C. Irvine, Sol. Energy Mater. Sol. C 176, 100 (2018)

    Article  Google Scholar 

  21. K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 509, 7723 (2011)

    Article  Google Scholar 

  22. S. Xu, Z.L. Wang, Nano Research 4, 1013 (2011)

    Article  Google Scholar 

  23. Bruker AXS GmbH, Diffracplus PDF Maint Powder Diffraction Database Manager Software, Printed in The Federal Republic of Germany (2000)

  24. L.W. Ji, S.M. Peng, J.S. Wu, W.S. Shih, C.Z. Wu, I.T. Tang, J. Phys. Chem. Solids 70, 1359 (2009)

    Article  Google Scholar 

  25. G. Kartopu, V. Barrioz, S.J.C. Irvine, A.J. Clayton, S. Monir, D.A. Lamb, Thin Solid Films 558, 374 (2014)

    Article  Google Scholar 

  26. J.S. Park, I. Mahmud, H.J. Shin, M.K. Park, A. Ranjkesh, D.K. Lee, H.-R. Kim, Appl. Surf. Sci. 362, 132 (2016)

    Article  Google Scholar 

  27. S. Yilmaz, O. Turkoglu, I. Belenli, Mater. Chem. Phys. 112, 472 (2008)

    Article  Google Scholar 

  28. H. Colak, O. Turkoglu, Mater. High Temp. 29, 344 (2012)

    Article  Google Scholar 

  29. J.B. Lee, H.J. Le, S.H. Seo, J.S. Park, Thin Solid Films 398–399, 641 (2001)

    Article  Google Scholar 

  30. A. Sawalha, A.M. Abdeen, A. Sedky, Physica B 404, 1316 (2009)

    Article  Google Scholar 

  31. D.J. Kwak, B.W. Park, Y.M. Sung, J. Korean Phys. Soc. 55, 1940 (2009)

    Article  Google Scholar 

  32. M.I. Khan, K.A. Bhatti, R. Qindeel, L.G. Bousiakou, N. Alonizan, F. Aleem, Results Phys. 6, 156 (2016)

    Article  Google Scholar 

  33. A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, R.Y. Borse, J. Optoelectron. Biomed. Mater. 1, 226 (2009)

    Google Scholar 

  34. C.S. Hong, H.H. Park, H.H. Park, H.J. Chang, J. Electroceram. 22, 353 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by TUBITAK (The Scientific and Technological Research Council of Turkey) project number 114Z572, and Çankırı Karatekin University (BAP; FF28015B12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çolak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çolak, H., Karaköse, E. & Kartopu, G. Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods. J Mater Sci: Mater Electron 29, 11964–11971 (2018). https://doi.org/10.1007/s10854-018-9298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9298-3

Navigation