Capacitive gas and vapor sensors using nanomaterials

  • P. Bindra
  • A. Hazra


An immense number of sensors has been reported in the literature employing various methods for the detection of different gases and vapors. This article summarizes those sensors whose sensing layer is made up of nanostructured materials and a change in capacitance value of device is the key parameter for detecting a gas or vapor. Now-a-days, capacitive sensors are emerging as they consume less power, operate well at room temperature and show decent response and recovery time. The sensing principles, configurations, mechanisms and performances of capacitive sensors based on different nanostructures are summarized and discussed in the current article. Emerging carbon based nanomaterials like carbon nanotube and graphene are also highlighted for capacitive mode detection of gases and vapors. Finally, an outlook of primary challenges in this field are identified and discussed at the end of the review.



This work was supported in part by Early Carrier Research Grant (Lett. No. ECR/2015/000345) by SERB, Govt. of India.


  1. 1.
    R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Hazra, S.K. Hazra, E. Bontempi, V.N. Lakshmi, S. Sinha, C.K. Sarkar, S. Basu, Anodically grown nanocrystalline titania thin film for hydrogen gas sensors—a comparative study of planar and MAIM device configurations. Sens. Actuators B 188, 787–796 (2013)CrossRefGoogle Scholar
  3. 3.
    M.N. Kavalenka, C.C. Striemer, J.S. DesOrmeaux, J.L. McGrath, P.M. Fauchet, Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sens. Actuators B 162, 22–26 (2012)CrossRefGoogle Scholar
  4. 4.
    S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Chemicapacitive microsensors for volatile organic compound detection. Sens. Actuators B 96, 541 (2003)CrossRefGoogle Scholar
  5. 5.
    S. Satyanarayana, D.T. McCormick, A. Majumdar, Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators B 115, 494 (2006)CrossRefGoogle Scholar
  6. 6.
    J.D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, T.L. Ferrell, Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array. Appl. Phys. Lett. 83, 3428 (2003)CrossRefGoogle Scholar
  7. 7.
    K.K. Park, H.J. Lee, G.G. Yaralioglu, A.S. Ergun, O. Oralkan, M. Kupnik, C.F. Quate, B.T. Khuri-Yakub, T. Braun, J.-P. Ramseyer, H.P. Lang, M. Hegner, C. Gerber, J.K. Gimzewski, Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen. Appl. Phys. Lett. 91, 094102 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Taghinejad, M. Taghinejad, M. Abdolahad, A. Saeidi, S. Mohajerzadeh, Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sens. Actuators B 176, 413–419 (2013)CrossRefGoogle Scholar
  9. 9.
    A.M. Kummer, A. Hierlemann, H. Baltes, Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal. Chem. 76, 2470 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Igreja, C.J. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A 112, 291–301 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Babaei, N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B 183, 617–626 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, F. Meng, M. Li, J. Liu, Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sens. Actuators B 140, 396–401 (2009)CrossRefGoogle Scholar
  13. 13.
    J.A. Robinson, E.S. Snow, F.K. Perkins, Improved chemical detection using single walled carbon nanotube network capacitors. Sens. Actuators A 135, 309–314 (2007)CrossRefGoogle Scholar
  14. 14.
    N.L. Teradal, S. Marx, A. Moraga, R. Jelinek, Porous graphene oxide chemi-capacitor vapor sensor array. J. Mater. Chem. C 5, 1128–1135 (2017)CrossRefGoogle Scholar
  15. 15.
    N.M. Kiasari, S. Soltanian, B. Gholamkhass, P. Servati, Room temperature ultra-sensitive resistive humidity sensor based on single zinc oxide nanowire. Sens. Actuators A 182, 101–105 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Jung, M. Han, G.S. Lee, Humidity-sensing characteristics of multi-walled carbon nanotube sheet. Mater. Lett. 122, 281–284 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Wu, T. Zhang, Y. Rao, Y. Gong, Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B 155, 258–263 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Li, M.J. Yang, Y. She, Humidity sensors using in situ synthesized sodiumpolystyrenesulfonate/ZnO nanocomposites. Talanta 62, 707–712 (2004)CrossRefGoogle Scholar
  19. 19.
    I. Venditti, I. Fratoddi, A. Bearzotti, Self-assembled copolymeric nanoparticles as chemically interactive materials for humidity sensors. Nanotechnology 21, 355502 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Shen, W. Wang, A. Fan, D. Wei, W. Liu, C. Han, Y. Shen, D. Meng, X. San, Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. Int. J. Hydrogen Energy 40(45), 15773–15779 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Yavari, N. Koratkar, G.-B.C. Sensors, J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A. Ponce, R. Parra, R. Savu, E. Joanni, P.R. Bueno, M. Cilense, J.A. Varela, M.S. Castro, Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. Sens. Actuators B 139, 447–452 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl. Phys. Lett. 105, 081604 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Hazra, S. Das, J. Kanungo, C.K. Sarkar, S. Basu, Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection. Sens. Actuators B 183, 87–95 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens. Actuators B. 177, 178–195 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. 116, 10586–10591 (2012)Google Scholar
  27. 27.
    Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at, K.L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B 93, 327–332 (2003)CrossRefGoogle Scholar
  28. 28.
    A. Hazra, P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483–3489 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sens. Actuators B 145, 232–238 (2010)CrossRefGoogle Scholar
  30. 30.
    L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films. 517, 948–951 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Homayoonnia, S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sens. Actuators B 237, 776–786 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators B 150, 806–810 (2010)CrossRefGoogle Scholar
  33. 33.
    M.T. Soo, K.Y. Cheong, A.F.M. Noor, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B 151, 39–55 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRefGoogle Scholar
  35. 35.
    T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–888 (2003)CrossRefGoogle Scholar
  36. 36.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRefGoogle Scholar
  37. 37.
    T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors. Nanotechnology. 19, 332001 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Yua, H. Wen, M. Shafiei, M.R. Field, Z.F. Liu, W. Wlodarski, N. Motta, Y.X. Li, K. Kalantar-zadeh, P.T. Lai, A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sens. Actuators B 184, 118–129 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003)CrossRefGoogle Scholar
  40. 40.
    E.S. Snow, F.K. Perkins, Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5, 2414–2417 (2005)CrossRefGoogle Scholar
  41. 41.
    K. Lui, M. Vest, P. Berlowitz, S. Akhter, H.H. Kung, Desorption of Zn from ZnO single-crystal surfaces during temperature programmed decomposition of methanol, formic acid, and 2-propanol. J. Phys. Chem. 90, 3183–3187 (1986)CrossRefGoogle Scholar
  42. 42.
    P.G. Smith, Introduction to Food Process Engineering, (Springer, New York, 2011), 28–34CrossRefGoogle Scholar
  43. 43.
    J.M. Castillo, Relative humidity: sensors, management and environmental effects. Nova Sci. Publishers 1–5 (2011)Google Scholar
  44. 44.
    C.L. Zhao, M. Qin, W.H. Li, Q.A. Huang, Enhanced Performance of a CMOS Interdigital Capacitive Humidity Sensor by Graphene Oxide, 16th International Solid-State Sensors (Actuators and Microsystems Conference, Beijing, 2011), pp. 1954–1957Google Scholar
  45. 45.
    M. Rahimabady, C.Y. Tan, S.Y. Tan, S. Chen, L. Zhang, Y.F. Chen, K. Yao, K. Zang, A. Humbert, D. Soccol, M. Bolt, Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B 243, 596–601 (2017)CrossRefGoogle Scholar
  46. 46.
    T. Ishihara, S. Matsubara, Capacitive type gas sensors. J. Electroceram. 2, 215–228 (1998)CrossRefGoogle Scholar
  47. 47.
    M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)CrossRefGoogle Scholar
  48. 48.
    J.T.W. Yeow, J.P.M. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology. 17, 5441–5448 (2006)CrossRefGoogle Scholar
  49. 49.
    E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science. 307, 1942–1945 (2005)CrossRefGoogle Scholar
  50. 50.
    X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sens. Actuators B 123, 461–465 (2007)CrossRefGoogle Scholar
  51. 51.
    C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B 122, 556–559 (2007)CrossRefGoogle Scholar
  52. 52.
    M. Armgarth, D. Söderberg, I. Lundström, Palladium and platinum gate metal oxide semiconductor capacitors in hydrogen and oxygen mixtures. Appl. Phys. Lett. 41, 654–655 (1982)CrossRefGoogle Scholar
  53. 53.
    C. Lu, Z. Chen, MOS hydrogen sensor with very fast response based on ultra-thin thermal SiO2 film. Int. J. Hydrogen Energy. 35, 12561–12567 (2010)CrossRefGoogle Scholar
  54. 54.
    A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guérin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor. Sens. Actuators B 106, 713–718 (2005)CrossRefGoogle Scholar
  55. 55.
    B.G. Streetman, S. Banerjee, Solid State Electronic Devices, PHI, Fifth Edition, 2000Google Scholar
  56. 56.
    L.F. Aval, S.M. Elahi, E. Darabi, S.A. Sebt, Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)CrossRefGoogle Scholar
  57. 57.
    J. Lin, E. Obermeier, Capacitive thin film gas sensor with signal processing system for determination of SO2. Sens. Actuators B 16, 319–322 (1993)CrossRefGoogle Scholar
  58. 58.
    P.M. Faia, E.L. Jesus, C.S. Louro, TiO2:WO3 composite humidity sensors doped with ZnO and CuO investigated by impedance spectroscopy. Sens. Actuators B 203, 340–348 (2014)CrossRefGoogle Scholar
  59. 59.
    L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, X.J. Li, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Kaur, S.K. Gupta, C.A. Betty, V. Saxena, V.R. Katti, S.C. Gadkari, J.V. Yakhmi, Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sens. Actuators B 107, 360–365 (2005)CrossRefGoogle Scholar
  61. 61.
    J. Wang, M. Su, J. Qi, L. Chang, Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens. Actuators B 139, 418–424 (2009)CrossRefGoogle Scholar
  62. 62.
    Y. Li, W.F. Jiang, S.H. Xiao, Y.F. Dong, H.F. Ji, X.J.Li, Effect of electrode configuration on capacitive humidity sensitivity of silicon nanoporous pillar array. Physica E 41, 621–625 (2009)CrossRefGoogle Scholar
  63. 63.
    W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, X.J. Li, Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators B 125, 651–655 (2007)CrossRefGoogle Scholar
  64. 64.
    W. Li, E. Dai, G. Bai, J. Xu, Depth-dependent humidity sensing properties of silicon nanopillar array. Sens. Actuators B 237, 526–533 (2016)CrossRefGoogle Scholar
  65. 65.
    L.L. Wang, L.P. Kang, H.Y. Wang, Z.P. Chen, Xin Jian Li, Capacitive humidity sensitivity of SnO2:Sn thin film grown on silicon nanoporous pillar array. Sens. Actuators B 229, 513–519 (2016)CrossRefGoogle Scholar
  66. 66.
    H.J. Xu, X.J. Li, Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt. Express. 16, 2933–2941 (2008)CrossRefGoogle Scholar
  67. 67.
    Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sens. Actuators A 235, 234–239 (2015)CrossRefGoogle Scholar
  68. 68.
    H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array., Sens. Actuators B 166–167, 451–456 (2012)CrossRefGoogle Scholar
  69. 69.
    A. Salomonsson, S. Roy, C. Aulin, J. Cerdà, P.O. Käll, L. Ojamäe, M. Strand, M. Sanati, A.L. Spetz, Nanoparticles for long-term stable, more selective MISiCFET gas sensors. Sens. Actuators B 107, 831–838 (2005)CrossRefGoogle Scholar
  70. 70.
    R. Loloee, B. Chorpening, S. Beer, R.N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sens. Actuators B 129, 200–210 (2008)CrossRefGoogle Scholar
  71. 71.
    F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, M. Eickhoff, A highly stable SiC based microhotplate NO2 gas-sensor. Sens. Actuators B 78, 216–220 (2001)CrossRefGoogle Scholar
  72. 72.
    N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)CrossRefGoogle Scholar
  73. 73.
    Y. Qiu, S. Yang, ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345–1352 (2007)CrossRefGoogle Scholar
  74. 74.
    X. Hu, J. Gong, L. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845–4850 (2008)CrossRefGoogle Scholar
  75. 75.
    Q. Qi, T. Zhang, Q.J. Yu, R. Wang, Y. Zeng, L. Liu, H.B. Yang, Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sens. Actuators B 133, 638–643 (2008)CrossRefGoogle Scholar
  76. 76.
    B. Tao, J. Zhang, F. Miao, H. Li, L. Wan, Y. Wang, Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens. Actuators B 136, 144–150 (2009)CrossRefGoogle Scholar
  77. 77.
    H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, B.T. Dai, Si nanowire-based humidity sensors prepared on glass substrate. IEEE Sens. J. 11, 3036–3041 (2011)CrossRefGoogle Scholar
  78. 78.
    X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sens. Actuators B 156, 631–636 (2011)CrossRefGoogle Scholar
  79. 79.
    K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuators B 224, 338–343 (2016)CrossRefGoogle Scholar
  80. 80.
    Y. Lee, C. Huang, H. Chen, H. Yang, Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens. Actuators B 189, 307–312 (2013)CrossRefGoogle Scholar
  81. 81.
    X. Zhou, J. Li, M. Ma, Q. Xue, Effect of ethanol gas on the electrical properties of ZnO nanorods. Physica E. 43, 1056–1060 (2011)CrossRefGoogle Scholar
  82. 82.
    X. Song, Q.Q.T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)CrossRefGoogle Scholar
  83. 83.
    K. Dutta, A. Hazra, P. Bhattacharyya, Ti/TiO2 nanotube array/Ti capacitive device for non-polar aromatic hydrocarbon detection. IEEE Trans. Device Mater. Reliab. 16, 235–242 (2016)CrossRefGoogle Scholar
  84. 84.
    T. Terencio, F. Di Renzo, D. Berthomieu, P. Trens, Adsorption of acetone vapor by Cu-BTC: an experimental and computational study. J. Phys. Chem. C. 117, 26156–26165 (2013)CrossRefGoogle Scholar
  85. 85.
    P. Davydovskaya, A. Ranft, B.V. Lotsch, R. Pohle, Analyte detection with Cu-BTC metal–organic framework thin films by means of mass-sensitive and work-function-based readout. Anal. Chem. 86, 6948–6958 (2014)CrossRefGoogle Scholar
  86. 86.
    Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275510 (2011)CrossRefGoogle Scholar
  87. 87.
    D. Li, Y.N. Xia, Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555–560 (2003)CrossRefGoogle Scholar
  88. 88.
    Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68–71 (2009)CrossRefGoogle Scholar
  89. 89.
    S. Dhall, N. Jaggi, R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens. Actuators A 201, 321–327 (2013)CrossRefGoogle Scholar
  90. 90.
    J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis. Sens. Actuators B 114, 943–949 (2006)CrossRefGoogle Scholar
  91. 91.
    S.G. Wang, Q. Zhang, D.J. Yang, P.J. Sellin, G.F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diam. Relat. Mater. 13, 1327–1332 (2004)CrossRefGoogle Scholar
  92. 92.
    S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)CrossRefGoogle Scholar
  93. 93.
    A. Ghosh, D. Late, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, NO2 and humidity sensing characteristics of few-layer graphenes. J. Exp. Nanosci. 4, 313–322 (2009)CrossRefGoogle Scholar
  94. 94.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRefGoogle Scholar
  95. 95.
    M.T. Ahmadi, R. Ismail, S. Anwar, Handbook of Research on Nanoelectronic Sensor Modeling and Applications, IGI Global 2016Google Scholar
  96. 96.
    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRefGoogle Scholar
  97. 97.
    S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 7, 11166–11173 (2013)CrossRefGoogle Scholar
  98. 98.
    S. Chopra, K. McGuire, N. Gothard, A.M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83, 2280–2282 (2003)CrossRefGoogle Scholar
  99. 99.
    V. Vizcaino, M. Jelisavcic, J.P. Sullivan, S.J. Buckman, Elastic electron scattering from formic acid (HCOOH): absolute differential cross-sections. New J. Phys. 8, 85–93 (2006)CrossRefGoogle Scholar
  100. 100.
    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)CrossRefGoogle Scholar
  101. 101.
    Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)CrossRefGoogle Scholar
  102. 102.
    M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle-based passive capacitive sensor for ethylene detection. J. Nanomater. 2012, 145406–145410 (2012)CrossRefGoogle Scholar
  103. 103.
    F. Miao, B. Tao, L. Sun, T. Liu, J. You, L. Wang, P.K. Chu, Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites. Sens. Actuators A 160, 48–53 (2010)CrossRefGoogle Scholar
  104. 104.
    H. Chen, Q. Xue, M. Ma, X. Zhou, Capacitive humidity sensor based on amorphous carbon film/Si heterojunctions. Sens. Actuators B 150, 487–489 (2010)CrossRefGoogle Scholar
  105. 105.
    L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science (BITS)-PilaniPilaniIndia

Personalised recommendations