Skip to main content
Log in

Recent developments in shear thickening fluid-impregnated synthetic and natural fiber-reinforced composites for ballistic applications: a review

  • Invited Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The main purpose of body armors is to restrict the ballistic impact (bullet velocity ~ 300 to 500 m/s). The conventional rigid body armors are typically consisting of synthetic fibers (SFs) like Kevlar, but these armors are too bulky, stiff, not comfortable, and lack extremities of body protection. But technological advancement inspired researchers to impregnate SFs with shear thickening fluids (STFs) or dilatant materials to develop advanced body armors with better protection, lightweight, and flexibility. The STF is nanosuspension which absorbs a significant amount of impact energy and hence can be utilized to improve the impact performance of fibers. This review is intended to provide a brief overview of single-phase and multiphase STF with additives like silicon carbide and boron carbide nanoparticles to attain better thickening effect compared to single-phase STF. Moreover, the double-shear thickening properties with ionic liquids, role of charged particles, and pH of dispersion medium are found very promising to scale-up the properties of STF in future. The article covers the advancements in STF-impregnated SF and natural fiber (NF)-reinforced composites for ballistic applications. However, the NFs have better capability to retain STF for longer period compared to SFs due to their unique chemical structure and the presence of surface voids and ridges in the fibers. But, mechanical properties of SFs are much better than NFs. Therefore, to develop commercial flexible body armors based on STF-impregnated NF composites, further research is required to attain the same ballistic impact resistance capability as demonstrated by the STF-impregnated SF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

(Reproduced with permission from American Physical Society [82], Copyright 2020, Physical review fluids).

Figure 6

(Reproduced with permission from the society of rheology [83] Copyright 2014, Journal of Rheology).

Figure 7
Figure 8

(Reproduced with permission from composite part B: engineering [95] Copyright 2020, Elsevier).

Figure 9

(Reproduced with permission from composite structure [111]; Copyright 2018, Elsevier).

Figure 10

(Reproduced with permission from thin-walled structures [113]; Copyright 2020, Elsevier). (b) Fabric structure during the energy transfer process. (Reproduced with permission from composite structure [16]; Copyright 2021, Elsevier).

Figure 11

(Reproduced with permission from colloid and polymer science [114]; Copyright 2019, Springer Nature).

Figure 12

(Reproduced with permission from the Journal of Industrial Textiles [131]; Copyright 2020, Sage journals).

Figure 13

(Reproduced with permission from colloid and polymer science [114]; Copyright 2019, Springer Nature).

Figure 14

(Reproduced with permission from international journal of engineering and techniques [134]; Copyright 2019).

Figure 15

(Reproduced with permission from composites science and technology [144]; Copyright 2016, Elsevier), (b) Three-dimensional structure; (Reproduced with permission from composite structure [141]; Copyright 2014, Elsevier) and (c) Warp-knitted spacer fabric, (Reproduced with permission from cellular polymers [138]; Copyright 2018, Sage journals).

Figure 16

(Reproduced with permission from composite structures [11]; Copyright 2021, Elsevier).

Figure 17

(Reproduced with permission from textile research journal [142], Copyright 2016, Sage journals).

Figure 18

(Reproduced with permission from materials & design [158]; Copyright 2014, Elsevier).

Figure 19

(Reproduced with permission from composite structures [8]; Copyright 2021, Elsevier).

Figure 20

(Reproduced with permission from Materials Processing and Design: Modeling, Simulation, and Applications NUMIFORM 2004, Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes held 13–17 June, 2004 in Columbus, OH. [183]; Copyright 2004).

Figure 21

(Reproduced with permission from materials & design [194]; Copyright 2017, Elsevier).

Figure 22

(Reproduced with permission from applied materials & interfaces [207]; Copyright 2015, the American chemical society publications).

Figure 23

(Reproduced with permission from rheologica acta [212]; Copyright 2003, springer).

Figure 24

(Reproduced with permission from thin-walled structures [113]; Copyright 2020, Elsevier), b Fixture type setup; (Reproduced with permission from composite part A: applied science & manufacturing [122]; Copyright 2016, Elsevier).

Figure 25

(Reproduced with permission from materials [221]; open access); (b) stab resistance test; b-1 setup; b-2 Knife specifications; b-3 Target installation; (Reproduced with permission from Royal society of chemistry [216]; open access) and (c) Schematic diagram of ballistic test set-up; (Reproduced with permission from polymers [222]; open access)

Figure 26

(Reproduced with permission from composite science and technology [214]; Copyright 2016, Elsevier).

Figure 27

(Reproduced with permission from composite structures [226]; Copyright 2015, Elsevier).

Figure 28

(Reproduced with permission from thin-walled structures [227]; Copyright 2021, Elsevier).

Figure 29

(Reproduced with permission from international journals of mechanical sciences [2]; Copyright 2019, Elsevier).

Figure 30
Figure 31

(Reproduced from polymers [254]; open access).

Figure 32

(Reproduced with permission from composite part B: engineering [247]; Copyright 2019, Elsevier).

Figure 33

(Reproduced with permission from defense technology [39]; Copyright 2022, Elsevier) and (b) Kevlar 49 fabric impregnated with STF; (Reproduced with permission from IOP conference series: materials science and engineering [288]; Copyright 2018, open access).

Figure 34

(Reproduced with permission from defense technology [39]; Copyright 2022, Elsevier).

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

Abbreviations

µm:

Micrometer

2D:

Two-dimensional

3D:

Three-dimensional

ANN:

Artificial neural network

ASTM:

American Society for Testing and Materials

BFS:

Back face signature

CEL:

Coupled Eulerian–Lagrangian

CLM:

Critical load model

CNT:

Carbon nanotube

CSR:

Critical shear rate

CST:

Continuous shear thickening

DST:

Discontinuous shear thickening

EG:

Ethylene glycol

FESEM:

Field emission scanning electron microscopy

FRCs:

Fiber-reinforced composites

GO:

Graphene oxide

H2O2 :

Hydrogen peroxide

H-bonds:

Hydrogen bonds

HCl:

Hydrogen chloride

Hz:

Hertz

ILs:

Ionic liquids

JF:

Jute fiber

MFA:

Micro-fibril angle

MWCNT:

Multi-walled carbon nanotubes

NaOH:

Sodium hydroxide

NFs:

Natural fibers

PEG:

Polyethylene glycol

pH:

Potential of hydrogen

PMMA:

Poly-methyl-methacrylate

SEM:

Scanning electron microscopy

SFs:

Synthetic fibers

SiC:

Silicon carbide

SiO2 :

Silica dioxide

STF:

Shear thickening fluid

STF/NF:

STF-treated natural fiber

STF/SF:

STF-treated synthetic fiber

UD:

Unidirectional

UHMWP:

Ultra-high molecular weight polyethylene

USD:

United States dollar

UTM:

Universal testing machine

wt%:

Weight percent

ZnO:

Zinc oxide

\(\dot{{\gamma }}\) :

Shear rate

η :

Viscosity

ϕ :

Volume packing fraction

References

  1. Hasanzadeh M, Mottaghitalab V, Hasanzadeh M, Mottaghitalab V (2013) The role of shear-thickening fluids ( STFs ) in ballistic and stab-resistance improvement of flexible armor. https://doi.org/10.1007/s11665-014-0870-6.

  2. Sen S, Bin JMN, Shaw A, Deb A (2019) Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite. Int J Mech Sci 164:105174. https://doi.org/10.1016/j.ijmecsci.2019.105174

    Article  Google Scholar 

  3. Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38:2825–2833. https://doi.org/10.1023/A:1024424200221

    Article  CAS  Google Scholar 

  4. Xu YJ, Zhang H, Huang GY (2022) Ballistic performance of B4C/STF/Twaron composite fabric. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.114754

    Article  Google Scholar 

  5. Huang C, Cui L, Liu Y, Xia H, Qiu Y, Ni QQ (2021) Low-velocity drop weight impact behavior of Twaron® fabric investigated using experimental and numerical simulations. Int J Impact Eng 149:103796. https://doi.org/10.1016/j.ijimpeng.2020.103796

    Article  Google Scholar 

  6. Kim YH, Park Y, Cha JH, Ankem VA, Kim CG (2018) Behavior of Shear Thickening Fluid (STF) impregnated fabric composite rear wall under hypervelocity impact. Compos Struct 204:52–62. https://doi.org/10.1016/j.compstruct.2018.07.064

    Article  Google Scholar 

  7. Arora S, Majumdar A, Butola BS (2019) Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos Struct 210:41–48. https://doi.org/10.1016/j.compstruct.2018.11.028

    Article  Google Scholar 

  8. Mishra VD, Mishra A, Singh A, Verma L, Rajesh G (2022) Ballistic impact performance of UHMWP fabric impregnated with shear thickening fluid nanocomposite. Compos Struct 281:114991. https://doi.org/10.1016/j.compstruct.2021.114991

    Article  CAS  Google Scholar 

  9. Zhang GM, Batra RC, Zheng J (2008) Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Compos Part B Eng 39:476–489. https://doi.org/10.1016/j.compositesb.2007.04.002

    Article  CAS  Google Scholar 

  10. Majumdar A, Laha A (2016) Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Text Res J 86:2056–2066. https://doi.org/10.1177/0040517515619357

    Article  CAS  Google Scholar 

  11. Zhang Q, Qin Z, Yan R, Wei S, Zhang W, Lu S et al (2021) Processing technology and ballistic-resistant mechanism of shear thickening fluid/high-performance fiber-reinforced composites: a review. Compos Struct 266:113806. https://doi.org/10.1016/j.compstruct.2021.113806

    Article  CAS  Google Scholar 

  12. Qin J, Guo B, Zhang L, Wang T, Zhang G, Shi X (2020) Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos Part B Eng 183:107686. https://doi.org/10.1016/j.compositesb.2019.107686

    Article  CAS  Google Scholar 

  13. Abtew MA, Boussu F, Bruniaux P (2021) Dynamic impact protective body armour: a comprehensive appraisal on panel engineering design and its prospective materials. Def Technol 17:2027–2049. https://doi.org/10.1016/j.dt.2021.03.016

    Article  Google Scholar 

  14. Gürgen S, Sofuoğlu MA (2020) Integration of shear thickening fluid into cutting tools for improved turning operations. J Manuf Process 56:1146–1154. https://doi.org/10.1016/j.jmapro.2020.06.012

    Article  Google Scholar 

  15. Baharvandi HR, Alebooyeh M, Alizadeh M, Khaksari P, Kordani N (2016) Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron® composite. J Ind Text 46:473–494. https://doi.org/10.1177/1528083715589750

    Article  CAS  Google Scholar 

  16. Qin J, Wang T, Yun J, Guo B, Shi X, Zhang G (2021) Response and adaptability of composites composed of the STF-treated Kevlar fabric to temperature. Compos Struct 260:113511. https://doi.org/10.1016/j.compstruct.2020.113511

    Article  Google Scholar 

  17. Mawkhlieng U, Majumdar A (2020) Designing of hybrid soft body armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid. Compos Struct 253:112776. https://doi.org/10.1016/j.compstruct.2020.112776

    Article  Google Scholar 

  18. Wang L, Du Z, Fu W, Wang P (2021) Study of mechanical property of shear thickening fluid (STF) for soft body-armor. Mater Res Exp. https://doi.org/10.1088/2053-1591/abf76a

    Article  Google Scholar 

  19. Yeh SK, Lin JJ, Zhuang HY, Chen YC, Chang HC, Zheng JY et al (2019) Light shear thickening fluid (STF)/Kevlar composites with improved ballistic impact strength. J Polym Res. https://doi.org/10.1007/s10965-019-1811-8

    Article  Google Scholar 

  20. Lu Z, Yuan Z, Chen X, Qiu J (2019) Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact. Compos Struct 227:111208. https://doi.org/10.1016/j.compstruct.2019.111208

    Article  Google Scholar 

  21. Dixit P, Ghosh A, Majumdar A (2019) Hybrid approach for augmenting the impact resistance of p-aramid fabrics: grafting of ZnO nanorods and impregnation of shear thickening fluid. J Mater Sci 54:13106–13117. https://doi.org/10.1007/s10853-019-03830-z

    Article  CAS  Google Scholar 

  22. Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820–828. https://doi.org/10.1016/j.matdes.2014.06.058

    Article  CAS  Google Scholar 

  23. Rwawiire S, Tomkova B, Militky J, Jabbar A, Kale BM (2015) Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications. Compos Part B Eng 81:149–157. https://doi.org/10.1016/j.compositesb.2015.06.021

    Article  CAS  Google Scholar 

  24. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44:120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  25. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  26. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:1–14. https://doi.org/10.3389/fmats.2019.00226

    Article  Google Scholar 

  27. Santulli C (2019) Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: a review. Materials. https://doi.org/10.3390/ma12030517

    Article  Google Scholar 

  28. Precedence research. Body armor market. Body Armor Mark 2023. https://www.precedenceresearch.com/body-armor-market. Accessed Sep 29, 2023

  29. Sathishkumar GK, Ibrahim M, Mohamed Akheel M, Rajkumar G, Gopinath B, Karpagam R et al (2022) Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites: a review. J Nat Fibers 19:3718–3741. https://doi.org/10.1080/15440478.2020.1848723

    Article  CAS  Google Scholar 

  30. Lau K, Hung P, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos Part B Eng 136:222–233. https://doi.org/10.1016/j.compositesb.2017.10.038

    Article  CAS  Google Scholar 

  31. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  32. Lotfi A, Li H, Dao DV, Prusty G (2021) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 34:238–284. https://doi.org/10.1177/0892705719844546

    Article  CAS  Google Scholar 

  33. Ribeiro MP, Neuba LDM, Da Silveira PHPM, Da Luz FS, Figueiredo ABHDS, Monteiro SN et al (2021) Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. J Mater Res Technol 12:221–233. https://doi.org/10.1016/j.jmrt.2021.02.064

    Article  CAS  Google Scholar 

  34. Nayak SY, Sultan MTH, Shenoy SB, Kini CR, Samant R, Shah AUM et al (2020) Potential of natural fibers in composites for ballistic applications–a review. J Nat Fibers 00:1–11. https://doi.org/10.1080/15440478.2020.1787919

    Article  CAS  Google Scholar 

  35. Garcia Filho FDC, Monteiro SN (2019) Piassava fiber as an epoxy matrix composite reinforcement for ballistic armor applications. Jom 71:801–808. https://doi.org/10.1007/s11837-018-3148-x

    Article  CAS  Google Scholar 

  36. Monteiro SN, Louro LHL, Trindade W, Elias CN, Ferreira CL, de Sousa LE et al (2015) Natural curaua fiber-reinforced composites in multilayered ballistic armor. Metall Mater Trans A Phys Metall Mater Sci 46:4567–4577. https://doi.org/10.1007/s11661-015-3032-z

    Article  CAS  Google Scholar 

  37. Bhateja SK (1975) The effects of hydrostatic pressure on the mechanical behavior of polymers. J Macromol Sci Part C 13:1–75. https://doi.org/10.1080/15321797508068145

    Article  Google Scholar 

  38. Mainali MK, Subedi I, Forbes DV, Hubbard SM, Podraza NJ (2023) Optical and electronic transport properties of epitaxial InGaAs and InAlAs in multilayer stacks. J Mater Sci 58:9533–9546. https://doi.org/10.1007/s10853-023-08547-8

    Article  CAS  Google Scholar 

  39. Mahesh V, Harursampath D, Mahesh V (2022) An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite. Def Technol 18:401–409. https://doi.org/10.1016/j.dt.2021.03.013

    Article  Google Scholar 

  40. Mahesh V, Harausampath D, Mahesh V (2021) An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite. Def Technol. https://doi.org/10.1016/j.dt.2021.03.013

    Article  Google Scholar 

  41. Guleria T, Verma N, Zafar S, Jain V (2021) Fabrication of Kevlar®-reinforced ultra-high molecular weight polyethylene composite through microwave-assisted compression molding for body armor applications. J Reinf Plast Compos 40:307–320. https://doi.org/10.1177/0731684420959449

    Article  CAS  Google Scholar 

  42. Okhawilai M, Parnklang T, Mora P, Hiziroglu S, Rimdusit S (2019) The energy absorption enhancement in aramid fiber-reinforced poly(benzoxazine-co-urethane) composite armors under ballistic impacts. J Reinf Plast Compos 38:133–146. https://doi.org/10.1177/0731684418808894

    Article  CAS  Google Scholar 

  43. Bhat A, Naveen J, Jawaid M, Norrrahim MNF, Rashedi A, Khan A (2021) Advancement in fiber reinforced polymer, metal alloys and multi-layered armour systems for ballistic applications: a review. J Mater Res Technol 15:1300–1317. https://doi.org/10.1016/j.jmrt.2021.08.150

    Article  CAS  Google Scholar 

  44. Nayak R, Crouch I, Kanesalingam S, Ding J, Tan P, Lee B et al (2018) Body armor for stab and spike protection, Part 1: scientific literature review. Text Res J 88:812–832. https://doi.org/10.1177/0040517517690623

    Article  CAS  Google Scholar 

  45. Guo Z, Chen W, Zheng J (2019) Effect of replacement strike-face material on the ballistic performance of multi-ply soft armor targets. Text Res J 89:711–725. https://doi.org/10.1177/0040517517753641

    Article  CAS  Google Scholar 

  46. Guo Z, Martinez-Morales S, Chen W (2020) Projectile strength effects on the ballistic impact response of soft armor targets. Text Res J 90:282–293. https://doi.org/10.1177/0040517519862882

    Article  CAS  Google Scholar 

  47. Yang D, Hu Y, Gong X, Zhang S, Chen X (2017) Review of body armor research. AATCC J Res 4:18–26. https://doi.org/10.14504/ajr.4.6.4

    Article  CAS  Google Scholar 

  48. Finckenor MM, Marshall GC (2017) Comparison of high-performance fiber materials properties in simulated and actual space environments, NASA Technical Reports Server. NASA Tech. pp 1–48

  49. Crouch IG (2019) Body armour: new materials, new systems. Def Technol 15:241–253. https://doi.org/10.1016/j.dt.2019.02.002

    Article  Google Scholar 

  50. Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I (2019) Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses. Compos Struct 223:110966. https://doi.org/10.1016/j.compstruct.2019.110966

    Article  Google Scholar 

  51. Liu X, Li M, Li X, Deng X, Zhang X, Yan Y et al (2018) Ballistic performance of UHMWPE fabrics/EAMS hybrid panel. J Mater Sci 53:7357–7371. https://doi.org/10.1007/s10853-018-2055-4

    Article  CAS  Google Scholar 

  52. Golovin K, Phoenix SL (2016) Effects of extreme transverse deformation on the strength of UHMWPE single filaments for ballistic applications. J Mater Sci 51:8075–8086. https://doi.org/10.1007/s10853-016-0077-3

    Article  CAS  Google Scholar 

  53. Wang H, Hazell PJ, Shankar K, Morozov EV, Escobedo JP, Wang C (2017) Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics. J Mater Sci 52:13977–13991. https://doi.org/10.1007/s10853-017-1482-y

    Article  CAS  Google Scholar 

  54. Avci H, Hassanin A, Hamouda T, Kiliç A (2019) High performance fibers : a review on current state of art and. J Eng Archit. 27

  55. Na W, Ahn H, Han S, Harrison P, Park JK, Jeong E et al (2016) Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate. Compos Part B Eng 97:162–175. https://doi.org/10.1016/j.compositesb.2016.05.017

    Article  CAS  Google Scholar 

  56. Non Newtonian Fluids 2010. https://www.sciencelearn.org.nz/resources/1502-non-newtonian-fluids. Accessed June 8, 2022

  57. Zhang X, Wang P, Kurkin A, Chen Q, Gong X, Zhang Z et al (2021) Mechanical response of shear thickening fluid filled composite subjected to different strain rates. Int J Mech Sci 196:106304. https://doi.org/10.1016/j.ijmecsci.2021.106304

    Article  Google Scholar 

  58. Ionescu CM, Birs IR, Copot D, Muresan CI, Caponetto R (2020) Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2019.0284

    Article  Google Scholar 

  59. Hassan TA, Rangari VK, Jeelani S (2010) Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Mater Sci Eng A 527:2892–2899. https://doi.org/10.1016/j.msea.2010.01.018

    Article  CAS  Google Scholar 

  60. Bian X, Kim C, Karniadakis GE (2016) 111 years of Brownian motion. Soft Matter 12:6331–6346. https://doi.org/10.1039/c6sm01153e

    Article  CAS  Google Scholar 

  61. Ávila AF, de Oliveira AM, Leão SG, Martins MG (2018) Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact. Compos Part A Appl Sci Manuf 112:468–474. https://doi.org/10.1016/j.compositesa.2018.07.006

    Article  CAS  Google Scholar 

  62. Haro Albuja E, Szpunar JA, Odeshi AG (2016) Ballistic impact response of laminated hybrid materials made of 5086–H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid. Compos Part A Appl Sci Manuf 87:54–65. https://doi.org/10.1016/j.compositesa.2016.04.007

    Article  CAS  Google Scholar 

  63. Mawkhlieng U, Majumdar A (2019) Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos Part B Eng 175:107167. https://doi.org/10.1016/j.compositesb.2019.107167

    Article  CAS  Google Scholar 

  64. Srivastava A, Majumdar A, Butola BS (2011) Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater Sci Eng A 529:224–229. https://doi.org/10.1016/j.msea.2011.09.021

    Article  CAS  Google Scholar 

  65. Wu L, Wang J, Jiang Q, Lu Z, Wang W, Lin JH (2020) Low-velocity impact behavior of flexible sandwich composite with polyurethane grid sealing shear thickening fluid core. J Sandw Struct Mater 22:1274–1291. https://doi.org/10.1177/1099636219837701

    Article  CAS  Google Scholar 

  66. Hassan TA, Rangari VK, Jeelani S (2010) Sonochemical synthesis and rheological properties of shear thickening silica dispersions. Ultrason Sonochem 17:947–952. https://doi.org/10.1016/j.ultsonch.2010.02.001

    Article  CAS  Google Scholar 

  67. Khodadadi A, Liaghat G, Taherzadeh-Fard A, Shahgholian-Ghahfarokhi D (2021) Impact characteristics of soft composites using shear thickening fluid and natural rubber–A review of current status. Compos Struct 271:114092. https://doi.org/10.1016/j.compstruct.2021.114092

    Article  CAS  Google Scholar 

  68. Lam L, Chen W, Hao H, Li Z, Ha NS, Pham TM (2022) Numerical study of bio-inspired energy-absorbing device using shear thickening fluid (STF). Int J Impact Eng 162:104158. https://doi.org/10.1016/j.ijimpeng.2022.104158

    Article  Google Scholar 

  69. Kim Y, Park Y, Cha J, Ankem VA, Kim C (2018) Behavior of Shear Thickening Fluid ( STF ) impregnated fabric composite rear wall under hypervelocity impact. Compos Struct 204:52–62. https://doi.org/10.1016/j.compstruct.2018.07.064

    Article  Google Scholar 

  70. Li D, Wang R, Liu X, Zhang S, Fang S, Yan R (2020) Effect of dispersing media and temperature on inter-yarn frictional properties of Kevlar fabrics impregnated with shear thickening fl uid. Compos Struct 249:112557. https://doi.org/10.1016/j.compstruct.2020.112557

    Article  Google Scholar 

  71. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions: 1: observation of a flow instability. Trans Soc Rheol 16:155–173. https://doi.org/10.1122/1.549250

    Article  CAS  Google Scholar 

  72. Wei M, Lin K, Sun L (2022) Shear thickening fluids and their applications. Mater Des 216:110570. https://doi.org/10.1016/j.matdes.2022.110570

    Article  CAS  Google Scholar 

  73. Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91:1866–1874. https://doi.org/10.1063/1.457091

    Article  CAS  Google Scholar 

  74. Jiang W, Xuan S, Gong X (2015) file:///C:/Users/UMESH/Desktop/All new STF/critical scaling of shear viscosity at the jamming transition.pdf. Appl Phys Lett. https://doi.org/10.1063/1.4918344

    Article  Google Scholar 

  75. Hsu CP, Mandal J, Ramakrishna SN, Spencer ND, Isa L (2021) Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-21580-y

    Article  CAS  Google Scholar 

  76. Sedes O, Singh A, Morris JF (2020) Fluctuations at the onset of discontinuous shear thickening in a suspension. J Rheol 64:309–319. https://doi.org/10.1122/1.5131740

    Article  CAS  Google Scholar 

  77. Fernandez N, Mani R, Rinaldi D, Kadau D, Mosquet M, Lombois-Burger H et al (2013) Microscopic mechanism for shear thickening of non-brownian suspensions. Phys Rev Lett 111:1–5. https://doi.org/10.1103/PhysRevLett.111.108301

    Article  CAS  Google Scholar 

  78. Seto R, Mari R, Morris JF, Denn MM (2013) Discontinuous shear thickening of frictional hard-sphere suspensions. Phys Rev Lett 111:1–5. https://doi.org/10.1103/PhysRevLett.111.218301

    Article  CAS  Google Scholar 

  79. Morris JF (2022) Discontinuous shear thickening in dense suspensions: Mechanisms, force networks, and fluctuations. Sci Talks 3:100031. https://doi.org/10.1016/j.sctalk.2022.100031

    Article  Google Scholar 

  80. Peters IR, Majumdar S, Jaeger HM (2016) Direct observation of dynamic shear jamming in dense suspensions. Nature 532:214–217. https://doi.org/10.1038/nature17167

    Article  CAS  Google Scholar 

  81. Olsson P, Teitel S (2007) Critical scaling of shear viscosity at the jamming transition. Phys Rev Lett 99:1–4. https://doi.org/10.1103/PhysRevLett.99.178001

    Article  CAS  Google Scholar 

  82. Gameiro M, Singh A, Kondic L, Mischaikow K, Morris JF (2020) Interaction network analysis in shear thickening suspensions. Phys Rev Fluids 5:1–21. https://doi.org/10.1103/PhysRevFluids.5.034307

    Article  Google Scholar 

  83. Mari R, Seto R, Morris JF, Denn MM (2014) Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J Rheol 58:1693–1724. https://doi.org/10.1122/1.4890747

    Article  CAS  Google Scholar 

  84. Arshad M, Maali A, Claudet C, Lobry L, Peters F, Lemaire E (2021) An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions. Soft Matter 17:6088–6097. https://doi.org/10.1039/d1sm00254f

    Article  CAS  Google Scholar 

  85. Sivadasan V, Lorenz E, Hoekstra AG, Bonn D (2019) Shear thickening of dense suspensions: the role of friction. Phys Fluids. https://doi.org/10.1063/1.5121536

    Article  Google Scholar 

  86. van der Naald M, Zhao L, Jackson GL, Jaeger HM (2021) The role of solvent molecular weight in shear thickening and shear jamming. Soft Matter 17:3144–3152. https://doi.org/10.1039/d0sm01350a

    Article  CAS  Google Scholar 

  87. Mawkhlieng U, Majumdar A (2019) Soft body armour. Text Prog 51:139–224. https://doi.org/10.1080/00405167.2019.1692583

    Article  Google Scholar 

  88. Azrin Hani AR, Roslan A, Mariatti J, Maziah M (2012) Body armor technology: a review of materials, construction techniques and enhancement of ballistic energy absorption. Adv Mater Res 488–489:806–812. https://doi.org/10.4028/www.scientific.net/AMR.488-489.806

    Article  Google Scholar 

  89. Ding J, Tracey P, Li W, Peng G, Whitten PG, Wallace GG (2013) Review on shear thickening fluids and applications. Text Light Ind Sci Technol 2:161–173

    Google Scholar 

  90. Ge J, Tan Z, Li W, Zhang H (2017) The rheological properties of shear thickening fluid reinforced with SiC nanowires. Results Phys 7:3369–3372. https://doi.org/10.1016/j.rinp.2017.08.065

    Article  Google Scholar 

  91. Xua YL, Gong XL, Peng C, Sun YQ, Jiang WQ, Zhang Z (2010) Shear thickening fluids based on additives with different concentrations and molecular chain lengths. Chin J Chem Phys 23:342–346. https://doi.org/10.1088/1674-0068/23/03/342-346

    Article  CAS  Google Scholar 

  92. Liu L, Yang Z, Zhao Z, Liu X, Chen W (2020) The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid. Thin-Walled Struct 151:106717. https://doi.org/10.1016/j.tws.2020.106717

    Article  Google Scholar 

  93. Qin J, Zhang G, Shi X (2017) Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J Dispers Sci Technol 38:935–942. https://doi.org/10.1080/01932691.2016.1216435

    Article  CAS  Google Scholar 

  94. Lei Z, Chen B, Koo YM, Macfarlane DR (2017) Introduction: ionic liquids. Chem Rev 117:6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246

    Article  CAS  Google Scholar 

  95. Qin J, Guo B, Zhang L, Wang T, Zhang G, Shi X (2020) Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid. Compos Part B 183:107686. https://doi.org/10.1016/j.compositesb.2019.107686

    Article  CAS  Google Scholar 

  96. Gao J, Mwasame PM, Wagner NJ (2017) Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C 4 mim][BF 4 ]. J Rheol (N Y N Y) 61:525–535. https://doi.org/10.1122/1.4979685

    Article  CAS  Google Scholar 

  97. Pamies R, Avilés MD, Arias-Pardilla J, Carrión FJ, Sanes J, Bermúdez MD (2019) Rheological study of new dispersions of carbon nanotubes in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. J Mol Liq 278:368–375. https://doi.org/10.1016/j.molliq.2019.01.074

    Article  CAS  Google Scholar 

  98. Cao C, Luo Y, Xiao M (2021) Preparation and characterization of imidazolyl ionic liquid-based shear thickening dispersion system. J Appl Polym Sci 138:1–11. https://doi.org/10.1002/app.49719

    Article  CAS  Google Scholar 

  99. Lin CC, Lin CM, Huang CC, Lou CW, Meng HH, Hsu CH et al (2009) Elucidating the design and impact properties of composite nonwoven fabrics with various filaments in bulletproof vest cushion layer. Text Res J 79:268–274. https://doi.org/10.1177/0040517507097515

    Article  CAS  Google Scholar 

  100. Arora S, Ghosh A (2018) Evolution of soft body armor. Adv Text Eng Mater. https://doi.org/10.1002/9781119488101.ch13

    Article  Google Scholar 

  101. Laha A, Majumdar A (2016) Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater Des 89:286–293. https://doi.org/10.1016/j.matdes.2015.09.077

    Article  CAS  Google Scholar 

  102. Gu J, Huang XC, Li Y, Wang XL, Shi MW, Zheng Z (2014) Improving the stab-resistance performance of ultra high molecular weight polyethylene fabric intercalated with nano-silica-fluid. J Shanghai Jiaotong Univ 19:102–109. https://doi.org/10.1007/s12204-013-1467-1

    Article  Google Scholar 

  103. Benzait Z, Trabzon L (2018) A review of recent research on materials used in polymer–matrix composites for body armor application. J Compos Mater 52:3241–3263. https://doi.org/10.1177/0021998318764002

    Article  CAS  Google Scholar 

  104. Tang F, Dong C, Yang Z, Kang Y, Huang X, Li M et al (2022) Protective performance and dynamic behavior of composite body armor with shear stiffening gel as buffer material under ballistic impact. Compos Sci Technol 218:109190. https://doi.org/10.1016/j.compscitech.2021.109190

    Article  CAS  Google Scholar 

  105. Ali A, Shaker ZR, Khalina A, Sapuan SM (2011) Development of anti-ballistic board from ramie fiber. Polym Plast Technol Eng 50:622–634. https://doi.org/10.1080/03602559.2010.551381

    Article  CAS  Google Scholar 

  106. Chen X, Zhu F, Wells G (2013) An analytical model for ballistic impact on textile based body armour. Compos Part B Eng 45:1508–1514. https://doi.org/10.1016/j.compositesb.2012.08.005

    Article  CAS  Google Scholar 

  107. Sun L, Zhu J, Wei M, Zhang C, Song Y, Qi P (2018) Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid. Mater Res Express. https://doi.org/10.1088/2053-1591/aac255

    Article  Google Scholar 

  108. Zhang J, Wang Y, Zhou J, Zhao C, Wu Y, Liu S et al (2021) Intralayer interfacial sliding effect on the anti-impact performance of STF/Kevlar composite fabric. Compos Part A Appl Sci Manuf 145:106401. https://doi.org/10.1016/j.compositesa.2021.106401

    Article  CAS  Google Scholar 

  109. Xu YJ, Zhang H, Huang GY (2022) Ballistic performance of B 4 C/STF/Twaron composite fabric. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.114754

    Article  Google Scholar 

  110. Sheng X, Qin J, Wang T, Yun J, Zhang G (2021) Properties of Kevlar fabric composites reinforced by STF composed of monodisperse polystyrene microspheres. Thin-Walled Struct 167:108238. https://doi.org/10.1016/j.tws.2021.108238

    Article  Google Scholar 

  111. Guo G (2018) Finite element analysis of pre-stretch effects on ballistic impact performance of woven fabrics. Compos Struct 200:173–186. https://doi.org/10.1016/j.compstruct.2018.05.067

    Article  Google Scholar 

  112. Khodadadi A, Liaghat GH, Sabet AR, Hadavinia H, Aboutorabi A, Razmkhah O et al (2018) Experimental and numerical analysis of penetration into Kevlar fabric impregnated with shear thickening fluid. J Thermoplast Compos Mater 31:392–407. https://doi.org/10.1177/0892705717704485

    Article  CAS  Google Scholar 

  113. Liu L, Cai M, Liu X, Zhao Z, Chen W (2020) Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment. Thin-Walled Struct 157:107103. https://doi.org/10.1016/j.tws.2020.107103

    Article  Google Scholar 

  114. Wei M, Lv Y, Sun L, Sun H (2020) Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions. Colloid Polym Sci 298:243–250. https://doi.org/10.1007/s00396-020-04599-3

    Article  CAS  Google Scholar 

  115. Gürgen S (2020) Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-Walled Struct 148:106573. https://doi.org/10.1016/j.tws.2019.106573

    Article  Google Scholar 

  116. Sahoo SK, Mishra S, Islam E, Nebhani L (2020) Tuning shear thickening behavior via synthesis of organically modified silica to improve impact resistance of Kevlar fabric. Mater Today Commun 23:100892. https://doi.org/10.1016/j.mtcomm.2020.100892

    Article  CAS  Google Scholar 

  117. Mankarious RA, Radwan MA (2020) Shear thickening fluids comparative analysis composed of silica nanoparticles in polyethylene glycol and starch in water. J Nanotechnol. https://doi.org/10.1155/2020/8839185

    Article  Google Scholar 

  118. White EEB, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49:119–129. https://doi.org/10.1007/s00397-009-0415-3

    Article  CAS  Google Scholar 

  119. Crawford NC, Popp LB, Johns KE, Caire LM, Peterson BN, Liberatore MW (2013) Shear thickening of corn starch suspensions: does concentration matter? J Colloid Interface Sci 396:83–89. https://doi.org/10.1016/j.jcis.2013.01.024

    Article  CAS  Google Scholar 

  120. Cao S, Pang H, Zhao C, Xuan S, Gong X (2020) The CNT/PSt-EA/Kevlar composite with excellent ballistic performance. Compos Part B Eng 185:107793. https://doi.org/10.1016/j.compositesb.2020.107793

    Article  CAS  Google Scholar 

  121. Gürgen S, Kuşhan MC (2017) The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Test 64:296–306. https://doi.org/10.1016/j.polymertesting.2017.11.003

    Article  CAS  Google Scholar 

  122. Hasanzadeh M, Mottaghitalab V, Babaei H, Rezaei M (2016) The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos Part A Appl Sci Manuf 88:263–271. https://doi.org/10.1016/j.compositesa.2016.06.006

    Article  CAS  Google Scholar 

  123. Gürgen S, Kuşhan MC (2017) The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos Part A Appl Sci Manuf 94:50–60. https://doi.org/10.1016/j.compositesa.2016.12.019

    Article  CAS  Google Scholar 

  124. Liu M, Zhang S, Liu S, Cao S, Wang S, Bai L et al (2019) CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Compos Part A Appl Sci Manuf 126:105612. https://doi.org/10.1016/j.compositesa.2019.105612

    Article  CAS  Google Scholar 

  125. He Q, Cao S, Wang Y, Xuan S, Wang P, Gong X (2018) Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Compos Part A Appl Sci Manuf 106:82–90. https://doi.org/10.1016/j.compositesa.2017.12.019

    Article  CAS  Google Scholar 

  126. Bhanvase B, Barai D (2021) Stability of nanofluids. Nanofluids Heat Mass Transf. https://doi.org/10.1016/b978-0-12-821955-3.00009-1

    Article  Google Scholar 

  127. Periyasamy S, Balaji J (2020) Analysis of impact energy absorption of kevlar and polyester composite impregnated with corn starch shear thickening fluid. Indian J Fibre Tex Res 45:80–89

    CAS  Google Scholar 

  128. Muhrat A, Puga H (2019) Ultrasonic vibration as a primary mixing tool in accelerating aluminium–copper alloys preparation

  129. Lu Z, Yuan Z, Qiu J (2021) Effect of particle size of fumed silica on the puncture resistance of fabrics impregnated with shear thickening fluid. J Eng Fiber Fabr. https://doi.org/10.1177/15589250211061393

    Article  Google Scholar 

  130. Polanski M, Bystrzycki J (2009) The influence of different additives on the solid-state reaction of magnesium hydride (MgH2) with Si. Int J Hydrogen Energy 34:7692–7699. https://doi.org/10.1016/j.ijhydene.2009.06.002

    Article  CAS  Google Scholar 

  131. Zhang X, Li TT, Peng HK, Wang Z, Huo J, Lou CW et al (2020) Effects of bi-particle-sized shear thickening fluid on rheological behaviors and stab resistance of Kevlar fabrics. J Ind Text. https://doi.org/10.1177/1528083720907400

    Article  Google Scholar 

  132. Sheikhi MR, Gürgen S (2022) Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos Struct 279:114797. https://doi.org/10.1016/j.compstruct.2021.114797

    Article  Google Scholar 

  133. Liu H, Zhu H, Fu K, Sun G, Chen Y, Yang B et al (2022) High-impact resistant hybrid sandwich panel filled with shear thickening fluid. Compos Struct 284:115208. https://doi.org/10.1016/j.compstruct.2022.115208

    Article  CAS  Google Scholar 

  134. Karnik RD, Admuthe PLS (2019) Automatic density detection and recognition of fabric structure using image processing. Corpus 5:54–59

    Google Scholar 

  135. Majumdar A, Laha A, Bhattacharjee D, Biswas I (2017) Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour. Compos Struct 178:415–425. https://doi.org/10.1016/j.compstruct.2017.07.018

    Article  Google Scholar 

  136. Zhi C, Du M, Sun Z, Wu M, He X, Meng J et al (2020) Warp-knitted spacer fabric reinforced syntactic foam: a compression modulus meso-mechanics theoretical model and experimental verification. Polymers. https://doi.org/10.3390/polym12020286

    Article  Google Scholar 

  137. Liu Y, Hu H, Zhao L, Long H (2012) Compression behavior of warp-knitted spacer fabrics for cushioning applications. Text Res J 82:11–20. https://doi.org/10.1177/0040517511416283

    Article  CAS  Google Scholar 

  138. Zhi C, Zhu G, Meng J, Jiang J, Long H, Yu L (2018) Compression properties of syntactic foam reinforced by warp-knitted spacer fabric: Theoretical compression strength model and experimental verification. Cell Polym 37:21–32. https://doi.org/10.1177/026248931803700102

    Article  CAS  Google Scholar 

  139. Jin L, Hu H, Sun B, Gu B (2010) A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Compos Part B Eng 41:337–353. https://doi.org/10.1016/j.compositesb.2010.03.006

    Article  CAS  Google Scholar 

  140. Hosur MV, Mohammed AA, Zainuddin S, Jeelani S (2008) Impact performance of nanophased foam core sandwich composites. Mater Sci Eng A 498:100–109. https://doi.org/10.1016/j.msea.2007.11.156

    Article  CAS  Google Scholar 

  141. Yazici M, Wright J, Bertin D, Shukla A (2014) Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Compos Struct 110:98–109. https://doi.org/10.1016/j.compstruct.2013.11.016

    Article  Google Scholar 

  142. Bilisik K (2017) Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: a review. Text Res J 87:2275–2304. https://doi.org/10.1177/0040517516669075

    Article  CAS  Google Scholar 

  143. Guden M, Tasdemirci A. The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and 2013. https://doi.org/10.1016/j.matdes.2012.09.059

  144. Cwalina CD, McCutcheon CM, Dombrowski RD, Wagner NJ (2016) Engineering enhanced cut and puncture resistance into the thermal micrometeoroid garment (TMG) using shear thickening fluid (STF) - Armor™ absorber layers. Compos Sci Technol 131:61–66. https://doi.org/10.1016/j.compscitech.2016.06.001

    Article  CAS  Google Scholar 

  145. Laha A, Majumdar A (2016) Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl Clay Sci 132–133:468–474. https://doi.org/10.1016/j.clay.2016.07.017

    Article  CAS  Google Scholar 

  146. Li D, Wang R, Guan F, Zhu Y, You F (2022) Enhancement of the quasi-static stab resistance of Kevlar fabrics impregnated with shear thickening fluid. J Mater Res Technol 18:3673–3683. https://doi.org/10.1016/j.jmrt.2022.04.052

    Article  CAS  Google Scholar 

  147. Gao Y, Zhang W, Xu P, Cai X, Fan Z (2018) Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate. Int J Impact Eng 122:60–72. https://doi.org/10.1016/j.ijimpeng.2018.07.017

    Article  Google Scholar 

  148. Fejdyś M, Kośla K, Kucharska-Jastrząbek A, Łandwijt M (2021) Influence of ceramic properties on the ballistic performance of the hybrid ceramic–multi-layered UHMWPE composite armour. J Aust Ceram Soc 57:149–161. https://doi.org/10.1007/s41779-020-00516-7

    Article  CAS  Google Scholar 

  149. Caglayan C, Osken I, Ataalp A, Turkmen HS, Cebeci H (2020) Impact response of shear thickening fluid filled polyurethane foam core sandwich composites. Compos Struct 243:112171. https://doi.org/10.1016/j.compstruct.2020.112171

    Article  Google Scholar 

  150. Yang D, Wei Q, Xin B, Chen X (2020) Research on the creation of TA/LOI compound structure fabric and its ballistic performance for 3D curved-surface ballistic application. Compos Part B Eng 201:108275. https://doi.org/10.1016/j.compositesb.2020.108275

    Article  CAS  Google Scholar 

  151. Zhao F, Wu L, Lu Z, Lin JH, Jiang Q (2022) Design of shear thickening fluid/polyurethane foam skeleton sandwich composite based on non-Newtonian fluid solid interaction under low-velocity impact. Mater Des 213:110375. https://doi.org/10.1016/j.matdes.2021.110375

    Article  CAS  Google Scholar 

  152. Erol O, Powers BM, Keefe M (2017) Effects of weave architecture and mesoscale material properties on the macroscale mechanical response of advanced woven fabrics. Compos Part A Appl Sci Manuf 101:554–566. https://doi.org/10.1016/j.compositesa.2017.07.016

    Article  Google Scholar 

  153. Özdemir H, Mert E (2013) The effects of fabric structural parameters on the breaking, bursting and impact strengths of diced woven fabrics. Tekst ve Konfeksiyon 23:113–123

    Google Scholar 

  154. Afroz F, Islam MM (2021) Study on mechanical property of woven fabrics made from 50/50 cotton-tencel blended siro yarn. Heliyon 7:e08243. https://doi.org/10.1016/j.heliyon.2021.e08243

    Article  CAS  Google Scholar 

  155. Lin G, Li J, Li F, Chen P, Sun W (2022) Low-velocity impact response of sandwich composite panels with shear thickening gel filled honeycomb cores. Compos Commun 32:101136. https://doi.org/10.1016/j.coco.2022.101136

    Article  Google Scholar 

  156. Hu P, Cheng Y, Zhang P, Liu J, Yang H, Chen J (2021) A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile. Ceram Int 47:22497–22513. https://doi.org/10.1016/j.ceramint.2021.04.259

    Article  CAS  Google Scholar 

  157. Kartikeya K, Chouhan H, Ram K, Prasad S, Bhatnagar N (2022) Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. Int J Impact Eng 164:104211. https://doi.org/10.1016/j.ijimpeng.2022.104211

    Article  Google Scholar 

  158. Majumdar A, Butola BS, Srivastava A (2014) Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid. Mater Des 54:295–300. https://doi.org/10.1016/j.matdes.2013.07.086

    Article  CAS  Google Scholar 

  159. Khodadadi A, Liaghat G, Vahid S, Sabet AR, Hadavinia H (2019) Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos Part B Eng 162:643–652. https://doi.org/10.1016/j.compositesb.2018.12.121

    Article  CAS  Google Scholar 

  160. Park Y, Kim Y, Baluch AH, Kim CG (2014) Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric. Int J Impact Eng 72:67–74. https://doi.org/10.1016/j.ijimpeng.2014.05.007

    Article  Google Scholar 

  161. Moure MM, Rubio I, Aranda-Ruiz J, Loya JA, Rodríguez-Millán M (2018) Analysis of impact energy absorption by lightweight aramid structures. Compos Struct 203:917–926. https://doi.org/10.1016/j.compstruct.2018.06.092

    Article  Google Scholar 

  162. Nilakantan G, Nutt S (2018) Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets. Def Technol 14:165–178. https://doi.org/10.1016/j.dt.2018.01.002

    Article  Google Scholar 

  163. Li Z, Xue Y, Sun B, Bu G (2023) Hybrid ratio optimizations on ballistic penetration of carbon Kevlar UHMWPE fiber laminates. Int J Mech Sci 258:108585

    Article  Google Scholar 

  164. Zeng XS, Tan VBC, Shim VPW (2006) Modelling inter-yarn friction in woven fabric armour. Int J Numer Methods Eng 66:1309–1330. https://doi.org/10.1002/nme.1596

    Article  Google Scholar 

  165. Chu Y, Rahman MR, Min S, Chen X (2020) Experimental and numerical study of inter-yarn friction affecting mechanism on ballistic performance of Twaron® fabric. Mech Mater 148:103421. https://doi.org/10.1016/j.mechmat.2020.103421

    Article  Google Scholar 

  166. Wang Y, Chen X, Young R, Kinloch I, Garry W (2016) An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels. Text Res J 86:34–43. https://doi.org/10.1177/0040517514566110

    Article  CAS  Google Scholar 

  167. Wang Y, Chen X, Young R, Kinloch I, Wells G (2015) A numerical study of ply orientation on ballistic impact resistance of multi-ply fabric panels. Compos Part B Eng 68:259–265. https://doi.org/10.1016/j.compositesb.2014.08.049

    Article  CAS  Google Scholar 

  168. Arora S, Majumdar A, Butola BS (2020) Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response. Compos Struct 233:111720. https://doi.org/10.1016/j.compstruct.2019.111720

    Article  Google Scholar 

  169. Kadir Bilisik, Nesrin Karaduman NEB (2016) Chapter 3: fibre architectures for composite applications, book title: fibrous and textile materials for composite applications. https://doi.org/10.1007/978-981-10-0234-2

  170. Luan K, Sun B, Gu B (2013) Ballistic impact damages of 3-D angle-interlock woven composites based on high strain rate constitutive equation of fiber tows. Int J Impact Eng 57:145–158. https://doi.org/10.1016/j.ijimpeng.2013.02.003

    Article  Google Scholar 

  171. Bajya M, Majumdar A, Butola BS, Arora S, Bhattacharjee D (2021) Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels. Compos Struct 255:112941. https://doi.org/10.1016/j.compstruct.2020.112941

    Article  CAS  Google Scholar 

  172. Bandaru AK, Vetiyatil L, Ahmad S (2015) The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos Part B Eng 76:300–319. https://doi.org/10.1016/j.compositesb.2015.03.012

    Article  CAS  Google Scholar 

  173. Wang Q, Chen Z, Chen Z (2013) Design and characteristics of hybrid composite armor subjected to projectile impact. Mater Des 46:634–639. https://doi.org/10.1016/j.matdes.2012.10.052

    Article  CAS  Google Scholar 

  174. Yang JS, Chen SY, Li S, Pang YZ, Schmidt R, Schröder KU et al (2021) Dynamic responses of hybrid lightweight composite sandwich panels with aluminium pyramidal truss cores. J Sandw Struct Mater 23:2176–2195. https://doi.org/10.1177/1099636220909816

    Article  CAS  Google Scholar 

  175. Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED (2007) Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos Sci Technol 67:565–578. https://doi.org/10.1016/j.compscitech.2006.08.007

    Article  CAS  Google Scholar 

  176. Li D, Wang R, Liu X, Fang S, Sun Y (2018) Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics. Polymers. https://doi.org/10.3390/polym10121356

    Article  Google Scholar 

  177. Newaz G, Dhaliwal GS, Phadatare A, Hailat M (2021) Effect of padding on flexural response of sandwich composites. J Sandw Struct Mater 23:1253–1271. https://doi.org/10.1177/1099636219852005

    Article  Google Scholar 

  178. Gürgen S, Kuşhan MC (2017) The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech Adv Mater Struct 24:1381–1390. https://doi.org/10.1080/15376494.2016.1231355

    Article  CAS  Google Scholar 

  179. Petel OE, Ouellet S, Loiseau J, Frost DL, Higgins AJ (2015) A comparison of the ballistic performance of shear thickening fl uids based on particle strength and volume fraction. Int J Impact Eng 85:83–96. https://doi.org/10.1016/j.ijimpeng.2015.06.004

    Article  Google Scholar 

  180. Zhang X, Li TT, Peng HK, Lou CW, Lin JH (2022) Enhanced sandwich structure composite with shear thickening fluid and thermoplastic polyurethanes for High-performance stab resistance. Compos Struct 280:114930. https://doi.org/10.1016/j.compstruct.2021.114930

    Article  CAS  Google Scholar 

  181. Zhao Q, Yuan J, Jiang H, Yao H, Wen B (2021) Vibration control of a rotor system by shear thickening fluid dampers. J Sound Vib 494:115883. https://doi.org/10.1016/j.jsv.2020.115883

    Article  Google Scholar 

  182. Choi J, Han S, Baliwag M, Kim BH, Jang H, Kim JT et al (2022) Artificial stretchable armor for skin-interfaced wearable devices and soft robotics. Extrem Mech Lett 50:101537. https://doi.org/10.1016/j.eml.2021.101537

    Article  Google Scholar 

  183. Wetzel ED (2004) The effect of rheological parameters on the ballistic properties of shear thickening fluid (stf)-kevlar composites. 288–93. https://doi.org/10.1063/1.1766538.

  184. Maranzano BJ, Wagner NJ (2001) The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J Rheol 45:1205–1222. https://doi.org/10.1122/1.1392295

    Article  CAS  Google Scholar 

  185. Olhero SM, Ferreira JMF (2004) Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol 139:69–75. https://doi.org/10.1016/j.powtec.2003.10.004

    Article  CAS  Google Scholar 

  186. Feng X, Li S, Wang Y, Wang Y, Liu J (2014) Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids. Mater Des 64:456–461. https://doi.org/10.1016/j.matdes.2014.06.060

    Article  CAS  Google Scholar 

  187. Kalman DP, Merrill RL, Wagner NJ, Wetzel ED (2009) Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl Mater Interfaces 1:2602–2612. https://doi.org/10.1021/am900516w

    Article  CAS  Google Scholar 

  188. Petel OE, Ouellet S, Loiseau J, Frost DL, Higgins AJ (2015) A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int J Impact Eng 85:83–96. https://doi.org/10.1016/j.ijimpeng.2015.06.004

    Article  Google Scholar 

  189. Heinze DA, Carastan DJ (2020) The influence of fumed silica content, dispersion energy, and humidity on the stability of shear thickening fluids. Rheol Acta 59:455–468. https://doi.org/10.1007/s00397-020-01216-6

    Article  CAS  Google Scholar 

  190. Zarei M, Aalaie J (2020) Application of shear thickening fluids in material development. J Mater Res Technol 9:10411–10433. https://doi.org/10.1016/j.jmrt.2020.07.049

    Article  Google Scholar 

  191. Gürgen S, Kus MC (2017) Shear thickening fluids in protective applications: a review. Progr Polym Sci 75:48–72. https://doi.org/10.1016/j.progpolymsci.2017.07.003

    Article  CAS  Google Scholar 

  192. Jiang W, Sun Y, Xu Y, Peng C, Gong X, Zhang Z (2010) Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine-water mixtures. Rheol Acta 49:1157–1163. https://doi.org/10.1007/s00397-010-0486-1

    Article  CAS  Google Scholar 

  193. Mawkhlieng U, Majumdar A, Bhattacharjee D (2021) Graphene reinforced multiphase shear thickening fluid for augmenting low velocity ballistic resistance. Fibers Polym 22:213–221. https://doi.org/10.1007/s12221-021-0163-2

    Article  CAS  Google Scholar 

  194. Chen Q, Liu M, Xuan S, Jiang W, Cao S, Gong X (2017) Shear dependent electrical property of conductive shear thickening fluid. Mater Des 121:92–100. https://doi.org/10.1016/j.matdes.2017.02.056

    Article  CAS  Google Scholar 

  195. Nakonieczna P, Wierzbicki Ł, Wróblewski R, Płociński T, Leonowicz M (2019) The influence of carbon nanotube addition on the properties of shear thickening fluid. Bull Mater Sci 42:2–5. https://doi.org/10.1007/s12034-019-1860-y

    Article  CAS  Google Scholar 

  196. Uddin J, Decent SP (2009) Curved Non-Newtonian liquid jets with surfactants. J Fluids Eng Trans ASME 131:0912031–0912037. https://doi.org/10.1115/1.3203202

    Article  CAS  Google Scholar 

  197. Rojas MR, Müller AJ, Sáez AE (2010) Effect of ionic environment on the rheology of wormlike micelle solutions of mixtures of surfactants with opposite charge. J Colloid Interface Sci 342:103–109. https://doi.org/10.1016/j.jcis.2009.10.012

    Article  CAS  Google Scholar 

  198. Ye F, Zhu W, Jiang W, Wang Z, Chen Q, Gong X et al (2013) Influence of surfactants on shear-thickening behavior in concentrated polymer dispersions. J Nanoparticle Res. https://doi.org/10.1007/s11051-013-2122-3

    Article  Google Scholar 

  199. Hu YT, Boltenhagen P, Matthys E, Pine DJ (1998) Shear thickening in low-concentration solutions of wormlike micelles: II—Slip, fracture, and stability of the shear-induced phase. J Rheol 42:1209–1226. https://doi.org/10.1122/1.550917

    Article  CAS  Google Scholar 

  200. Qin J, Zhang G, Shi X, Tao M (2015) Study of a shear thickening fluid: the dispersions of silica nanoparticles in 1-butyl-3-methylimidazolium tetrafluoroborate. J Nanoparticle Res. https://doi.org/10.1007/s11051-015-3144-9

    Article  Google Scholar 

  201. Kamibayashi M, Ogura H, Otsubo Y (2008) Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. J Colloid Interface Sci 321:294–301. https://doi.org/10.1016/j.jcis.2008.02.022

    Article  CAS  Google Scholar 

  202. Chen Q, Zhu W, Ye F, Gong X, Jiang W, Xuan S (2014) PH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions. Mater Res Express. https://doi.org/10.1088/2053-1591/1/1/015303

    Article  Google Scholar 

  203. Tian T, Peng G, Li W, Ding J, Nakano M (2015) Experimental and modelling study of the effect of temperature on shear thickening fluids. Korea Aust Rheol J 27:17–24. https://doi.org/10.1007/s13367-015-0003-2

    Article  Google Scholar 

  204. Tian T, Li W, Ding J, Alici G, Du H (2013) Study of the temperature effect of shear thickening fluid. In: 2013 IEEE/ASME Int Conf Adv Intell Mechatronics Mechatronics Hum wellbeing, AIM 2013:833–7. https://doi.org/10.1109/AIM.2013.6584197

  205. Li S, Wang J, Cai W, Zhao S, Wang Z, Wang S (2016) Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions. Chem Phys Lett 658:210–214. https://doi.org/10.1016/j.cplett.2016.06.055

    Article  CAS  Google Scholar 

  206. Holmes GA, Kim JH, McDonough WG, Riley MA, Rice KD (2009) A detailed investigation of the mechanical properties of polybenzoxazole fibers within soft body armor. J Mater Sci 44:3619–3625. https://doi.org/10.1007/s10853-009-3338-6

    Article  CAS  Google Scholar 

  207. Warren J, Offenberger S, Toghiani H, Pittman CU, Lacy TE, Kundu S (2015) Effect of temperature on the shear-thickening behavior of fumed silica suspensions. ACS Appl Mater Interfaces 7:18650–18661. https://doi.org/10.1021/acsami.5b05094

    Article  CAS  Google Scholar 

  208. Shi WQ, Jun SR, Yao M, Yu CM, Feng Y (2019) The influence of temperature on inter-yarns fictional properties of shear thickening fluids treated Kevlar fabrics. Compos Part A Appl Sci Manuf 116:46–53. https://doi.org/10.1016/j.compositesa.2018.10.020

    Article  CAS  Google Scholar 

  209. Li D, Wang R, Liu X, Zhang S, Fang S, Yan R (2020) Effect of dispersing media and temperature on inter-yarn frictional properties of Kevlar fabrics impregnated with shear thickening fluid. Compos Struct 249:112557. https://doi.org/10.1016/j.compstruct.2020.112557

    Article  Google Scholar 

  210. Liu XQ, Bao RY, Wu XJ, Yang W, Xie BH, Yang MB (2015) Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv 5:18367–18374. https://doi.org/10.1039/c4ra16261g

    Article  CAS  Google Scholar 

  211. Zhang X, Li W, Gong XL (2008) Study on magnetorheological shear thickening fluid. Smart Mater Struct. https://doi.org/10.1088/0964-1726/17/1/015051

    Article  Google Scholar 

  212. Shenoy Sudhir SS, Wagner NJ, Bender JW (2003) E-FiRST: electric field responsive shear thickening fluids. Rheol Acta 42:287–294. https://doi.org/10.1007/s00397-002-0289-0

    Article  CAS  Google Scholar 

  213. Wang X, Zhang J, Bao L, Yang W, Zhou F, Liu W (2020) Enhancement of the ballistic performance of aramid fabric with polyurethane and shear thickening fl uid. Mater Des 196:109015. https://doi.org/10.1016/j.matdes.2020.109015

    Article  CAS  Google Scholar 

  214. Wang Y, Wang S, Xu C, Xuan S, Jiang W, Gong X (2016) Dynamic behavior of magnetically responsive shear-stiffening gel under high strain rate. Compos Sci Technol 127:169–176. https://doi.org/10.1016/j.compscitech.2016.03.009

    Article  CAS  Google Scholar 

  215. Bajya M, Majumdar A, Singh B, Kumar S (2020) Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Compos Part B 183:107721. https://doi.org/10.1016/j.compositesb.2019.107721

    Article  CAS  Google Scholar 

  216. Qin J, Zhang G, Zhou L, Li J, Shi X (2017) Dynamic/quasi-static stab-resistance and mechanical properties of soft body armour composites constructed from Kevlar fabrics and shear thickening fluids. RSC Adv 7:39803–39813. https://doi.org/10.1039/c7ra07549a

    Article  CAS  Google Scholar 

  217. Sun L, Wei M, Zhu J (2021) Low velocity impact performance of fiber-reinforced polymer impregnated with shear thickening fluid. Polym Test 96:107095. https://doi.org/10.1016/j.polymertesting.2021.107095

    Article  CAS  Google Scholar 

  218. Bandaru AK, Chavan VV, Ahmad S, Alagirusamy R, Bhatnagar N (2016) Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int J Impact Eng 89:1–13. https://doi.org/10.1016/j.ijimpeng.2015.10.014

    Article  Google Scholar 

  219. Chu TL, Ha-Minh C, Imad A (2016) A numerical investigation of the influence of yarn mechanical and physical properties on the ballistic impact behavior of a Kevlar KM2® woven fabric. Compos Part B Eng 95:144–154. https://doi.org/10.1016/j.compositesb.2016.03.018

    Article  CAS  Google Scholar 

  220. McKee PJ, Sokolow AC, Yu JH, Long LL, Wetzel ED (2017) Finite element simulation of ballistic impact on single jersey knit fabric. Compos Struct 162:98–107. https://doi.org/10.1016/j.compstruct.2016.11.086

    Article  Google Scholar 

  221. Zhu XC, Zhu H, Li HR (2015) Drop-weight impact test on U-shape concrete specimens with statistical and regression analyses. Materials 8:5877–5890. https://doi.org/10.3390/ma8095281

    Article  CAS  Google Scholar 

  222. Fluid T, Paper STF, Panels H, Chang C, Shih C, You J, et al. (2021) Preparation and ballistic performance of a multi-layer armor system composed of kevlar/polyurea composites and shear

  223. Weerasinghe D, Mohotti D, Anderson J (2020) Incorporation of shear thickening fluid effects into computational modelling of woven fabrics subjected to impact loading: a review. Int J Prot Struct 11:340–378. https://doi.org/10.1177/2041419619889071

    Article  Google Scholar 

  224. Lee BW, Kim CG (2012) Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts. Adv Compos Mater 21:177–192. https://doi.org/10.1080/09243046.2012.690298

    Article  CAS  Google Scholar 

  225. Zhao P, Chen Q (2018) Numerical simulation and experimental comparison of the low velocity impact of shear thickening fluid. 2018 6th Int Conf Mech Automot Mater Eng C 2018: 106–110. https://doi.org/10.1109/CMAME.2018.8592118

  226. Park Y, Kim Y, Baluch AH, Kim C (2015) Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects. Compos Struct 125:520–529. https://doi.org/10.1016/j.compstruct.2015.02.041

    Article  Google Scholar 

  227. Liu L, Yang Z, Liu X, Chen W, Zhao Z, Luo G (2021) Yarn dynamic tensile behavior and meso-scale numerical simulation method for STF-Kevlar fabrics. Thin-Walled Struct 159:107319. https://doi.org/10.1016/j.tws.2020.107319

    Article  Google Scholar 

  228. Li S, Xu J, Zhang J, Wu L, Zhang H, Wei H et al (2021) Research progress of numerical simulation method based on the protection performance of stf-kevlar fabric liquid armor composites. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1855/1/012023

    Article  Google Scholar 

  229. Hu Q, Lu G, Hameed N, Tse KM (2022) Dynamic compressive behaviour of shear thickening fluid-filled honeycomb. Int J Mech Sci 229:107493. https://doi.org/10.1016/j.ijmecsci.2022.107493

    Article  Google Scholar 

  230. Gu ZP, Wu XQ, Li QM, Yin QY, Huang CG (2020) Dynamic compressive behaviour of sandwich panels with lattice truss core filled by shear thickening fluid. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2020.103616

    Article  Google Scholar 

  231. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Springer. https://doi.org/10.1007/s10853-019-03990-y

    Book  Google Scholar 

  232. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  233. Sen S, Shaw A, Adhikari B (2022) On the possibility of using Ramie: a natural material in cost-effective low threat body armours. J Ind Text 51:6612–6639. https://doi.org/10.1177/15280837221076576

    Article  Google Scholar 

  234. Naveen J, Jayakrishna K, Hameed Sultan MT, Bin ASMM (2020) Ballistic performance of natural fiber based soft and hard body armour: a mini review. Front Mater 7:1–6. https://doi.org/10.3389/fmats.2020.608139

    Article  Google Scholar 

  235. Indira Gandhi Krishi Vishvavidyalaya (IGKV) achieves a breakthrough in getting linen yarn using the flax plant n.d. https://www.unnatisilks.com/blog/indira-gandhi-krishi-vishvavidyalaya-igkv-achieves-a-breakthrough-in-getting-linen-yarn-using-the-flax-plant/ =In2017 when the Indira,importedforourlinentextiles. Accessed Apr 20, 2022

  236. Hemp: a new and exciting fibre for Indian fabrics n.d. https://www.unnatisilks.com/blog/hemp-a-new-and-exciting-fibre-for-indian-fabrics/. Accessed Apr 20, 2022

  237. Cotton yarn trading likely to improve this week in north India n.d. https://www.fibre2fashion.com/news/textile-news/cotton-yarn-trading-likely-to-improve-this-week-in-north-india-279063-newsdetails.html. Accessed Apr 20, 2022

  238. CCEA approves MSP of raw jute for 2022–23 season n.d. https://agrospectrumindia.com/2022/03/22/ccea-approves-msp-of-raw-jute-for-2022-23-season.html. Accessed Apr 19, 2022

  239. THE COIR FIBER n.d. https://textilevaluechain.in/in-depth-analysis/the-coir-fiber/. Accessed Apr 19, 2022

  240. Boosting bamboo, India’s natural ‘green gold’ n.d. https://indianexpress.com/article/opinion/boosting-bamboo-indias-natural-green-gold-7228122/. Accessed Apr 19, 2022

  241. Study of ramie fibre: a review n.d. https://www.fibre2fashion.com/industry-article/4787/study-of-ramie-fibre-a-review. Accessed Apr 21, 2022

  242. Banana Fibre for Sustainable Fashion and Beyond n.d. https://www.onlineclothingstudy.com/2020/10/banana-fibre-for-sustainable-fashion.html. Accessed Apr 21, 2022

  243. wonder plant revival: sisal production in Haiti n.d. https://www.concern.net/news/wonder-plant-revival-sisal-production-in-haiti. Accessed Apr 22, 2022

  244. Palanisamy S, Kalimuthu M, Azeez A, Palaniappan M, Dharmalingam S, Nagarajan R, et al. (2022) wear properties and post-moisture absorption mechanical behavior of kenaf/banana-fiber-reinforced epoxy composites. pp 1–10

  245. Abaca Fiber: Properties, Manufacturing Process and Uses | Manila Hemp Fiber n.d. https://textilelearner.net/abaca-fiber-properties-manufacturing/. Accessed Apr 22, 2022

  246. Fabrication, characterization, and evaluation of Luffa cylindrica fiber reinforced epoxy composites n.d. https://bioresources.cnr.ncsu.edu/resources/fabrication-characterization-and-evaluation-of-luffa-cylindrica-fiber-reinforced-epoxy-composites/. Accessed Apr 23 2022

  247. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  Google Scholar 

  248. Al-oqla FM, Sapuan SM (2018) Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. J Polym Environ 26:1290–1296. https://doi.org/10.1007/s10924-017-1028-z

    Article  CAS  Google Scholar 

  249. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. https://doi.org/10.3390/polym11101667

    Article  Google Scholar 

  250. Vigneshwaran S, Sundarakannan R, John KM, Joel Johnson RD, Prasath KA, Ajith S et al (2020) Recent advancement in the natural fiber polymer composites: a comprehensive review. J Clean Prod 277:124109. https://doi.org/10.1016/j.jclepro.2020.124109

    Article  CAS  Google Scholar 

  251. Suriani MJ, Rapi HZ, Ilyas RA, Petrů M, Sapuan SM (2021) Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: a review. Polymers 13:1–24. https://doi.org/10.3390/polym13081323

    Article  CAS  Google Scholar 

  252. Muneer Ahmed M, Dhakal HN, Zhang ZY, Barouni A, Zahari R (2021) Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: a critical review. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113496

    Article  Google Scholar 

  253. Rajak DK, Pagar DD, Menezes PL, Linul E. Fiber-reinforced polymer composites : n.d.

  254. Hasan KMF, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers. https://doi.org/10.3390/POLYM12051072

    Article  Google Scholar 

  255. Nurul Fazita MR, Nurnadia MJ, Abdul Khalil HPS, Mohamad Haafiz MK, Fizree HM, Suraya NLM (2017) Woven natural fiber fabric reinforced biodegradable composite: processing, properties and application. Green Energy Technol. https://doi.org/10.1007/978-3-319-46610-1_9

    Article  Google Scholar 

  256. Sinha AK, Narang HK, Bhattacharya S (2017) Mechanical properties of natural fibre polymer composites. J Polym Eng 37:879–895. https://doi.org/10.1515/polyeng-2016-0362

    Article  CAS  Google Scholar 

  257. Islam MH, Islam MR, Dulal M, Afroj S, Karim N (2022) The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: a review. IScience 25:103597. https://doi.org/10.1016/j.isci.2021.103597

    Article  CAS  Google Scholar 

  258. Suwan T, Maichin P, Fan M, Jitsangiam P, Tangchirapat W, Chindaprasirt P (2022) Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Constr Build Mater 316:125817. https://doi.org/10.1016/j.conbuildmat.2021.125817

    Article  CAS  Google Scholar 

  259. Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl Sci Manuf 37:1368–1376. https://doi.org/10.1016/j.compositesa.2005.08.016

    Article  CAS  Google Scholar 

  260. Rahimi M, Omran A, Tagnit-Hamou A (2022) Role of homogenization and surface treatment of flax fiber on performance of cement-based composites. Clean Mater 3:100037. https://doi.org/10.1016/j.clema.2021.100037

    Article  CAS  Google Scholar 

  261. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    Article  CAS  Google Scholar 

  262. Sever K, Sarikanat M, Seki Y, Erkan G, Erdoĝan ÜH, Erden S (2012) Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind Crops Prod 35:22–30. https://doi.org/10.1016/j.indcrop.2011.05.020

    Article  CAS  Google Scholar 

  263. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13:426–435. https://doi.org/10.1016/S1672-6529(16)60315-3

    Article  Google Scholar 

  264. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng 40:601–606. https://doi.org/10.1016/j.compositesb.2009.04.018

    Article  CAS  Google Scholar 

  265. Latiff ASM, Ishak MR, Mazlan N, Yaacob AM (2020) Mechanical properties of benzoylation treated sugar palm fiber and its composite. Int J Recent Technol Eng 8:4248–4252. https://doi.org/10.35940/ijrte.e5709.038620

    Article  Google Scholar 

  266. Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57:67–79. https://doi.org/10.1016/S0266-3538(96)00109-1

    Article  CAS  Google Scholar 

  267. Wang W, Xu M, Lou J, Dong A (2020) Changes in physicomechanical properties and structures of jute fibers after tetraacetylethylenediamine activated hydrogen peroxide treatment. J Mater Res Technol 9:15412–15420. https://doi.org/10.1016/j.jmrt.2020.10.096

    Article  CAS  Google Scholar 

  268. Liu K, Zhang X, Yan K (2018) Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydr Polym 188:221–227. https://doi.org/10.1016/j.carbpol.2018.01.111

    Article  CAS  Google Scholar 

  269. Long X, Xu C, Du J, Fu S (2013) The TAED/H2O2/NaHCO3 system as an approach to low-temperature and near-neutral pH bleaching of cotton. Carbohydr Polym 95:107–113. https://doi.org/10.1016/j.carbpol.2013.02.061

    Article  CAS  Google Scholar 

  270. Koohestani B, Darban AK, Mokhtari P, Yilmaz E, Darezereshki E (2019) Comparison of different natural fiber treatments: a literature review. Int J Environ Sci Technol 16:629–642. https://doi.org/10.1007/s13762-018-1890-9

    Article  CAS  Google Scholar 

  271. Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C et al (2005) Unsaturated polyester composites reinforced with flax fibers: Effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos Part A Appl Sci Manuf 36:975–986. https://doi.org/10.1016/j.compositesa.2004.11.008

    Article  CAS  Google Scholar 

  272. Alix S, Colasse L, Morvan C, Lebrun L, Marais S (2014) Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres. Carbohydr Polym 102:21–29. https://doi.org/10.1016/j.carbpol.2013.10.092

    Article  CAS  Google Scholar 

  273. Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A Appl Sci Manuf 32:1105–1115. https://doi.org/10.1016/S1359-835X(01)00032-X

    Article  Google Scholar 

  274. Nourbakhsh S, Sepehrnia H, Akbari E (2020) Novel corona discharge treatment of cotton fabric with Cu and ZnO nanoparticles. J Text Inst 111:1269–1276. https://doi.org/10.1080/00405000.2019.1707346

    Article  CAS  Google Scholar 

  275. Haydaruzzaman KRA, Khan MA, Khan AH, Hossain MA (2009) Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites. Radiat Phys Chem 78:986–993. https://doi.org/10.1016/j.radphyschem.2009.06.011

    Article  CAS  Google Scholar 

  276. Sever K, Erden S, Gülec HA, Seki Y, Sarikanat M (2011) Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites. Mater Chem Phys 129:275–280. https://doi.org/10.1016/j.matchemphys.2011.04.001

    Article  CAS  Google Scholar 

  277. Konczewicz W, Kozłowski RM (2012) Enzymatic treatment of natural fibres. Woodhead Publishing Limited

    Book  Google Scholar 

  278. Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298. https://doi.org/10.1016/j.compscitech.2008.08.022

    Article  CAS  Google Scholar 

  279. De Prez J, Van Vuure AW, Ivens J, Aerts G, Van de Voorde I (2018) Enzymatic treatment of flax for use in composites. Biotechnol Reports 20:e00294. https://doi.org/10.1016/j.btre.2018.e00294

    Article  Google Scholar 

  280. Ravi M, Dubey RR, Shome A, Guha S, Anil KC (2018) Effect of surface treatment on natural fibers composite. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/376/1/012053

    Article  Google Scholar 

  281. Da Cruz RB, Junior EPL, Monteiro SN, Louro LHL (2015) Giant bamboo fiber reinforced epoxy composite in multilayered ballistic armor. Mater Res 18:70–75. https://doi.org/10.1590/1516-1439.347514

    Article  Google Scholar 

  282. Costa UO, Nascimento LFC, Garcia JM, Monteiro SN, da Luz FS, Pinheiro WA et al (2019) Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers. https://doi.org/10.3390/polym11081356

    Article  Google Scholar 

  283. De Oliveira BF, Bolzan LT, Ramos FJHTV, Monteiro SN, Lima ÉP, Da Silva LC (2017) Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites. Mater Res 20:767–774. https://doi.org/10.1590/1980-5373-MR-2017-1002

    Article  Google Scholar 

  284. Nascimento LFC, Louro LHL, Monteiro SN, Gomes AV, Marçal RLSB, Lima ÉP et al (2017) Ballistic performance of mallow and jute natural fabrics reinforced epoxy composites in multilayered armor. Mater Res 20:399–403. https://doi.org/10.1590/1980-5373-mr-2016-0927

    Article  Google Scholar 

  285. Naveen J, Jawaid M, Zainudin ES, Sultan MTH, Yahaya RB (2018) Selection of natural fiber for hybrid kevlar/natural fiber reinforced polymer composites for personal body armor by using analytical hierarchy process. Front Mater 5:1–13. https://doi.org/10.3389/fmats.2018.00052

    Article  Google Scholar 

  286. Garcia Filho FDC, Oliveira MS, Pereira AC, Nascimento LFC, Ricardo Gomes Matheus J, Monteiro SN (2020) Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. J Mater Res Technol 9:1734–1741. https://doi.org/10.1016/j.jmrt.2019.12.004

    Article  CAS  Google Scholar 

  287. De AFS, Pereira AC, Filho FDCG, Lima ÉP, Monteiro SN, Weber RP (2018) Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J Mater Res Technol 7:535–540. https://doi.org/10.1016/j.jmrt.2018.05.026

    Article  CAS  Google Scholar 

  288. Feng Y, Ma Y, Lei Z, Cao S, Fang Q, Li W et al (2018) Experimental study on yarn pullout test of STF modified fabric. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/381/1/012111

    Article  Google Scholar 

  289. Wambua P, Vangrimde B, Lomov S, Verpoest I (2007) The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct 77:232–240. https://doi.org/10.1016/j.compstruct.2005.07.006

    Article  Google Scholar 

  290. Haro EE, Szpunar JA, Odeshi AG (2018) Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Def Technol 14:238–249. https://doi.org/10.1016/j.dt.2018.03.005

    Article  Google Scholar 

  291. Rohen LA, Margem FM, Monteiro SN, Vieira CMF, De Araujo BM, Lima ES (2015) Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor. Mater Res 18:55–62. https://doi.org/10.1590/1516-1439.346314

    Article  CAS  Google Scholar 

  292. Tonk R (2020) Natural fibers for sustainable additive manufacturing: a state of the art review. Mater Today Proc 37:3087–3090. https://doi.org/10.1016/j.matpr.2020.09.017

    Article  CAS  Google Scholar 

  293. Sathees KS (2020) Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications. Data Br 28:105054. https://doi.org/10.1016/j.dib.2019.105054

    Article  Google Scholar 

  294. Chauhan V, Kärki T, Varis J (2019) Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719889095

    Article  Google Scholar 

  295. Jariwala H, Jain P (2019) A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinf Plast Compos 38:441–453. https://doi.org/10.1177/0731684419828524

    Article  CAS  Google Scholar 

  296. Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N (2019) An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater Today Proc 27:2828–2834. https://doi.org/10.1016/j.matpr.2020.01.011

    Article  CAS  Google Scholar 

  297. Rohit K, Dixit S (2016) A review: future aspect of natural fiber reinforced composite. Polym Renew Resour 7:43–60. https://doi.org/10.1177/204124791600700202

    Article  Google Scholar 

Download references

Acknowledgements

Research for this paper was made possible by the generous support of the SEED funding program at UPES (UPES/R&D-SOE/07032022/08 dated 12/05/2022). Authors Subhankar Das and M.S. Goyat have received the funding. M.S. Goyat is grateful to the SERB SIRE Scheme, DST, Government of India for awarding SIRE fellowship with Award No. SIR/2022/001489.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Rahul Chamola, and Subhankar Das. The first draft of the manuscript was written by Rahul Chamola and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Subhankar Das or M. S. Goyat.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamola, R., Das, S., Ahlawat, D.S. et al. Recent developments in shear thickening fluid-impregnated synthetic and natural fiber-reinforced composites for ballistic applications: a review. J Mater Sci 59, 747–793 (2024). https://doi.org/10.1007/s10853-023-09201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09201-z

Navigation