Skip to main content
Log in

A review of computational phononics: the bulk, interfaces, and surfaces

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Broad-based interest in microscale heat transport in novel materials, engineered phononic materials, metamaterials, and their relevant systems has created significant demand for computational approaches to aid in investigation and design of materials that support phonons. This review describes the significant improvements that have been made and new needs that have emerged for capabilities associated with the computability of phonons. The technical scope encompasses issues, especially relevant to bulk, interface, and surface effects. Traditional approaches such as molecular dynamics, lattice dynamics, and Boltzmann transport equation continue to advance the field but are frequently extended to the limits of their physical or numerical validity. New materials beyond traditional group-IV, III–V, and II–VI semiconductors, phenomena that critically depend on scattering, such as in low-dimensional nanostructures, materials with interior surfaces and defects, and in high-temperature environments, continue to push these limits. The basis for the traditional calculation methods shares their origins with the earliest theories for thermal transport, acoustic waves in solids, spectroscopy and dynamical crystal lattices. These will remain in wide use in the future. But computing methods and the accompanying advances in microprocessor technologies have enabled growth of phonon computing models and methods in sophistication, accuracy, fidelity and complexity that will lead to fundamental impacts beyond the classic types of problems for which they were developed. With their increasingly integrated use for design and research, the myriad developments that presently exist must be understood for their suitability for certain applications and their ability to aid in the pursuit of new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

(adapted from [49])

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  Google Scholar 

  2. Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003–2012. Appl Phys Rev 1:011305-1–011305-45

    Article  Google Scholar 

  3. Chernatynskiy A, Phillpot SR (2013) Phonon-mediated thermal transport: confronting theory and microscopic simulation with experiment. Curr Opin Solid State Mater Sci 17(1):1–9

    Article  Google Scholar 

  4. Lindsay L (2016) First principles Peierls–Boltzmann phonon thermal transport: a topical review. Nanoscale Microscale Thermophys Eng 20(2):67–84

    Article  Google Scholar 

  5. Pop E, Sinha S, Goodson KE (2006) Heat generation and transport in nanometer-scale transistors. Proc IEEE 94(8):1587–1601

    Article  Google Scholar 

  6. Dincer I, Zamfirescu C (2011) Sustainable Energy Systems and Applications. Springer, New York

    Google Scholar 

  7. Corporation Intel (2017) Intel Supports American Innovation with $7 Billion Investment in Next-Generation Semiconductor Factory in Arizona. Intel Corporation, Santa Clara

    Google Scholar 

  8. International Technology Roadmap for Semiconductor (ITRS) (2014) http://public.itrs2.net/

  9. Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74(20):3005–3007

    Article  Google Scholar 

  10. Escobar RA, Ghai SS, Jhon MS, Amon CH (2006) Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling. Int J Heat Mass Transf 49(1):97–107

    Article  Google Scholar 

  11. Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802-1–040802-38

    Google Scholar 

  12. Ziman JM (2003) Electrons and Phonons. Clarendon Press, Oxford

    Google Scholar 

  13. Burnham AK, Weese RK, Wemhoff AP, Maienschein JL (2007) A historical and current perspective on predicting thermal cookoff behavior. J Therm Anal Calorim 89:407–415

    Article  Google Scholar 

  14. Coffey C (1985) Energy localization in rapidly deforming crystals. Phys Rev B 32:5335–5341

    Article  Google Scholar 

  15. Dlott DD, Fayer MD (1990) Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry. J Chem Phys 92:3798–3812

    Article  Google Scholar 

  16. Kraczek B, Chung PW (2013) Investigation of direct and indirect phonon-mediated bond excitation in alpha-RDX. J Chem Phys 138:074505-1–074505-10

    Article  Google Scholar 

  17. Rose JL (1999) Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge

    Google Scholar 

  18. Mandelis A (1987) Photoacoustic and Thermal Wave Phenomena in Semiconductors. North-Holland, New York

    Google Scholar 

  19. Meinhold L, Merzel F, Smith JC (2007) Lattice dynamics of a protein crystal. Phys Rev Lett 99:138101

    Article  Google Scholar 

  20. Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515–562

    Article  Google Scholar 

  21. Wang Y, Shang S-L, Fang H, Liu Z-K, Chen L-Q (2016) First-principles calculations of lattice dynamics and thermal properties of polar solids. npj Comput Mater 2:1–10

    Article  Google Scholar 

  22. Luckyanova MN, Garg J, Esfarjani K, Jandl A, Bulsara MT, Schmidt AJ, Minnich AJ, Chen S, Dresselhaus MS, Ren Z, Fitzgerald EA, Chen G (2012) Coherent phonon heat conduction in superlattices. Science 338:936–939

    Article  Google Scholar 

  23. NW Ashcroft, ND Mermin (1976) Solid state physics, college edition. In: Crane DG (ed), Saunders College, Philadelphia

  24. Meirovitch L (2001) Fundamentals of Vibrations, Long Grove. Waveland Press Inc, IL

    Google Scholar 

  25. Henry AS, Chen G (2008) Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J Comput Theor Nanosci 5(2):1–12

    Article  Google Scholar 

  26. Srivastava GP (1990) Physics of Phonons. IOP Publishing Ltd, New York

    Google Scholar 

  27. Gurevich VL (1988) Transport in phonon systems. In: Modern problems in condensed matter sciences. Elsevier Science Ltd, New York

  28. Schelling PK, Philllpot SR, Keblinski P (2002) Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulations. Appl Phys Lett 80(14):2484–2486

    Article  Google Scholar 

  29. Mazumder S, Majumdar A (2001) Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J Heat Transf 123(4):749–759

    Article  Google Scholar 

  30. Ali SA, Mazumder S (2015) Phonon heat conduction in multidimensional heterostructures: predictions using the Boltzmann transport equation. J Heat Transf 137(10):102401-1–102401-11

    Article  Google Scholar 

  31. Schelling PK, Phillpot P, Keblinski P (2004) Kapitza conductance and phonon scattering at grain boundaries by simulation. J Appl Phys 95(11):6082–6091

    Article  Google Scholar 

  32. Bottger H (1983) Principles of the theory of the lattice dynamics. Physik-Verlag, Berlin

    Google Scholar 

  33. Fritsch J, Schröder U (1999) Density functional calculation of semiconductor surface phonons. Phys Rep 309(4):209–331

    Article  Google Scholar 

  34. Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. In: Proceedings of the IEEE, vol 66(1)

  35. Izvekov S, Chung PW, Rice BM (2011) Non-equilibrium molecular dynamics simulation study of heat transport in hexahydro-1, 3, 5-trinitro-s-triazine (RDX). Int J Heat Mass Transf 54(25):5623–5632

    Article  Google Scholar 

  36. Jiang JW, Park HS, Rabczuk T (2013) Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J Appl Phys 114(6):064307-1–064307-10

    Article  Google Scholar 

  37. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Caldwell J (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  Google Scholar 

  38. Li Y, Siegel DJ, Adams JB, Liu XY (2003) Embedded-atom-method tantalum potential developed by the force-matching method. Phys Rev B 67(12):125101-1–125101-8

    Google Scholar 

  39. Khakshouri S, Alfe D, Duffy DM (2008) Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation. Phys Rev B 78(22):224304-1–224304-11

    Article  Google Scholar 

  40. Peierls RE (1929) On the kinetic theory of thermal conduction in crystals. Ann D Physik 3:1055–1101

    Article  Google Scholar 

  41. Chen G (2005) Nanoscale Energy Transport and Conversion. Oxford University Press, New York

    Google Scholar 

  42. VanGessel FG, Chung PW (2017) An anisotropic full Brillouin zone model for the three dimensional phonon Boltzmann transport equation. Comput Methods Appl Mech Eng 317:1012–1036

    Article  Google Scholar 

  43. Turney JE, McGaughey AJH, Amon CH (2010) In-plane phonon transport in thin films. J Appl Phys 107(2):024317-1–024317-8

    Article  Google Scholar 

  44. Donmezer N, Graham S (2014) A multiscale thermal modeling appraoch for ballistic and diffusive heat transport in two dimensional domains. Int J Therm Sci 76(1):235–244

    Article  Google Scholar 

  45. Regner KT, McGaughey AJH, Malen JA (2014) Analytical interpretation of nondiffusive phonon transport in thermoreflectance thermal conductivity measurements. Phys Rev B 90(6):064302-1–064302-10

    Article  Google Scholar 

  46. Johnson JA, Maznev AA, Cuffe J, Eliason JK, Minnich AJ, Kehoe T, Torres CMS, Chen G, Nelson KA (2013) Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys Rev Lett 110(2):025901-1–025901-5

    Article  Google Scholar 

  47. Yang F, Dames C (2013) Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys Rev B 87(3):035437-1–035437-12

    Article  Google Scholar 

  48. Escobar RA, Amon CH (2008) Thin film phonon heat conduction by the dispersion lattice Boltzmann method. J Heat Transf 130(1):092402-1–092402-8

    Google Scholar 

  49. Guyver R, Krumhansl J (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766–778

    Article  Google Scholar 

  50. Lee Y, Hwang GS (2012) Force-matching-based parameterization of the Stillinger–Weber potential for thermal conduction in silicon. Phys Rev B 85(12):125204-1–125204-5

    Article  Google Scholar 

  51. Ward A, Broido DA (2010) Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys Rev B 81(8):085205-1–085205-5

    Article  Google Scholar 

  52. Nabovati A, Sellan DP, Amon CH (2011) On the lattice Boltzmann method for phonon transport. J Comput Phys 230(15):5864–5876

    Article  Google Scholar 

  53. Sellan DP, Turney JE, McGaughey AJ, Amon CH (2010) Cross-plane phonon transport in thin films,”. J Appl Phys 108(11):113524-1–113524-8

    Article  Google Scholar 

  54. Modest MF (2013) Radiative heat transfer. Academic Press, London

    Google Scholar 

  55. Escobar RA, Amon CH (2007) Influence of phonon dispersion on transient thermal response of silicon-on_insulator transistors under self-heating conditions. J Heat Transf 129(1):790–797

    Article  Google Scholar 

  56. Heino P (2010) Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction. Comput Math Appl 59(1):2351–2359

    Article  Google Scholar 

  57. Christensen A, Graham S (2010) Multiscale lattice boltzmann modeling of phonon transport in crystalline semiconductor materials. Numer Heat Transf Part B Fundam 57(2):89–109

    Article  Google Scholar 

  58. Ali SA, Mazumder S (2017) Phonon Boltzmann Transport Equation based modeling of time domain thermo-reflectance experiments. Int J Heat Mass Transf 107:607–621

    Article  Google Scholar 

  59. Ali SAKG, Mazumder S, Sadayappan P, Mittal A (2014) Large-scale parallel computation of the phonon Boltzmann Transport Equation. Int J Therm Sci 86:341–351

    Article  Google Scholar 

  60. Guo Z, Xu K (2016) Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation. Int J Heat Mass Transf 102:944–958

    Article  Google Scholar 

  61. Murthy JY, Mathur SR (2003) An improved computational procedure for sub-micron heat conduction. J Heat Transf 125:904–910

    Article  Google Scholar 

  62. Narumanchi SVJ, Murthy JY, Amon CH (2006) Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics. Heat Mass Transf 42(6):478–491

    Article  Google Scholar 

  63. Narumanchi SV, Murthy JY, Amon CH (2005) Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors. J Heat Transf 127(7):713–723

    Article  Google Scholar 

  64. Murthy JY, Mathur SR (2002) Computation of sub-micron thermal transport using an unstructured finite volume method. J Heat Transf 124:1176–1184

    Article  Google Scholar 

  65. Ni C, Murthy JY (2009) Parallel computation of the phonon Boltzmann transport equation. Numer Heat Transf Part B Fundam 55(6):435–456

    Article  Google Scholar 

  66. Narumanchi SVJ, Murthy JY, Amon CH (2005) Submicron heat transport model in silicon accounting for phonon dispersion and polarization. J Heat Transf 126(6):946–955

    Article  Google Scholar 

  67. Ni C, Murthy JY (2012) Phonon transport modeling using Boltzmann transport equation with anisotropic relaxation times. J Heat Transf 134(8):082401-1–082401-12

    Article  Google Scholar 

  68. Zahiri S, Shao C, Shen Y, Bao H (2016) Collocation mesh-free method to solve the gray phonon Boltzmann transport equation. Numer Heat Transf Part B Fundam 70(5):459–471

    Article  Google Scholar 

  69. Hamian S, Yamada T, Faghri M, Park K (2015) Finite element analysis of transient ballistic–diffusive phonon heat transport in two-dimensional domains. Int J Heat Mass Transf 80:781–788

    Article  Google Scholar 

  70. Pisipati S, Chen C, Geer J, Sammakia B, Murray BT (2013) Multiscale thermal device modeling using diffusion in the Boltzmann transport equation. Int J Heat Mass Transf 64(1):286–303

    Article  Google Scholar 

  71. Allu P, Mazumder S (2016) Hybrid ballistic-diffusive solution to the frequency-dependent phonon Boltzmann Transport Equation. Int J Heat Mass Transf 100(1):165–177

    Article  Google Scholar 

  72. Chen G (2002) Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J Heat Transf 124(1):320–328

    Article  Google Scholar 

  73. Loy JM, Murthy JY, Singh D (2013) A fast hybrid Fourier–Boltzmann transport equation solver for nongray phonon transport. J Heat Transf 135(1):011008-1–011008-12

    Google Scholar 

  74. Lin Z, Zhigilei LV, Celli V (2008) Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys Rev B 77(7):075133-1–075133-17

    Article  Google Scholar 

  75. Mittal A, Mazumder S (2010) Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J Heat Transf 132(1):052402-1–052402-11

    Google Scholar 

  76. Peraud J-PM, Hadjiconstantinou NG (2011) Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys Rev B 84(20):205331-1–205331-15

    Article  Google Scholar 

  77. Shomali Z, Pedar B, Ghazanfarian J, Abbassi A (2017) Monte-Carlo parallel simulation of phonon transport for 3D silicon nano-devices. Int J Therm Sci 114:139–154

    Article  Google Scholar 

  78. Yang L, Minnich AJ (2017) Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation. Sci Rep 7(1):44254-1–44254-9

    Google Scholar 

  79. Lacroix D, Joulain K, Lemonnier D (2005) Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys Rev B 72(6):064305-1–064305-11

    Article  Google Scholar 

  80. Klitsner T, VanCleve JE, Fischer HE, Pohl RO (1988) Phonon radiative heat transfer and surface scattering. Phys Rev B 38(11):7576–7594

    Article  Google Scholar 

  81. Majumdar A (1993) Microscale heat conduction in dielectric thin films. J Heat Transf 115:7–16

    Article  Google Scholar 

  82. Pop E, Dutton RW (2004) Analytic band Monte Carlo model for electron transport in SiSi including acoustic and optical phonon dispersion. J Appl Phys 96(9):4998–5005

    Article  Google Scholar 

  83. Chen G (1996) Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J Heat Transf 118(1):539–545

    Article  Google Scholar 

  84. Sverdrup PG, Sinha S, Asheghi M, Uma S, Goodson KE (2001) Measurement of ballistic phonon conduction near hotspots in silicon. Appl Phys Lett 78(21):3331–3333

    Article  Google Scholar 

  85. Regner KT, Freedman JP, Malen JA (2015) Advances in studying phonon mean free path dependent contributions to thermal conductivity. Nanoscale Microscale Thermophys Eng 19(3):183–205

    Article  Google Scholar 

  86. Cuffe J, Eliason JK, Maznev AA, Collins KC, Johnson JA, Shchepetov A, Prunnila M, Ahopelto CMS, Torres G Chen, Nelson KA (2015) Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys Rev B 91(24):245423-1–245423-6

    Article  Google Scholar 

  87. Minnich AJ (2015) Advances in the measurement and computation of thermal phonon transport properties. J Phys Condens Matter 27(1):1–21

    Google Scholar 

  88. Callaway J (1959) Model for lattice thermal conductivity at low temperatures. Phys Rev 113(4):1046–1051

    Article  Google Scholar 

  89. Omini M, Sparavigna A (1995) An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys B 212(2):101–112

    Article  Google Scholar 

  90. Chernatynskiy A, Phillpot SR (2010) Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations. Phys Rev B 82(13):134301-1–134301-17

    Article  Google Scholar 

  91. Broido DA, Ward A, Mingo N (2005) Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys Rev B 72(1):014308-1–014308-8

    Article  Google Scholar 

  92. Mingo N, Stewart DA, Broido DA, Lindsay L, Li W (2014) Ab initio thermal transport. In: Shindé S, Srivastava G (eds) Length-scale dependent phonon interactions. Topics in Applied Physics, vol 128. Springer, New York

  93. Broido DA, Malorny M, Birner G, Mingo N, Stewart DA (2007) Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl Phys Lett 91(23):231922-1–231922-3

    Article  Google Scholar 

  94. Omini M, Sparavigna A (1996) Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys Rev B 53(14):9064–9073

    Article  Google Scholar 

  95. Omini M, Sparavigna A (1997) Heat transport in dielectric solids with diamond structure. NUOVO CIMENTO-SOCIETA ITALIANA DI FISICA SEZIONE D 19:1537–1564

    Google Scholar 

  96. Sparavigna A (2003) Role of nonpairwise interactions on phonon thermal transport. Phys Rev B 67(14):144305-1–144305-7

    Article  Google Scholar 

  97. Broido DA, Reinecke TL (2004) Lattice thermal conductivity of superlattice structures. Phys Rev B 70(8):081310-1–081310-4

    Article  Google Scholar 

  98. Lindsay L, Broido DA, Reinecke TL (2013) Ab initio thermal transport in compound semiconductors. Phys Rev B 87(16):165201-1–165201-15

    Article  Google Scholar 

  99. Ward A, Broido DA, Stewart DA, Deinzer G (2009) Ab initio theory of the lattice thermal conductivity in diamond. Phys Rev B 80(12):125203-1–125203-8

    Article  Google Scholar 

  100. Lindsay L, Broido DA, Mingo N (2010) Flexural phonons and thermal transport in graphene. Phys Rev B 82(11):115427-1–115427-6

    Article  Google Scholar 

  101. Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G (2012) Phonon conduction in PbSe, PbTe, and PbTeSe from first principles calculations. Phys Rev B 85(18):184303-1–184303-7

    Article  Google Scholar 

  102. Delaire O, Ma J, Marty K, May AF, McGuire MA, Du MH, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales BC (2011) Giant anharmonic phonon scattering in PbTe. Nat Mater 10(1):614–619

    Article  Google Scholar 

  103. Kroonblawd MP, Sewell TD (2016) Anisotropic relaxation of idealized hot spots in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). J Phys Chem C 120(1):17214–17223

    Article  Google Scholar 

  104. Byrd EFC, Scuseria GE, Chabalowski CF (2004) An ab initio study of solid nitromethane, HMX, RDX, and CL20: successes and failures of DFT. J Chem Phys 108(35):13100–13106

    Article  Google Scholar 

  105. Joshi K, Losada M, Chaudhuri S (2016) Intermolecular energy transfer dynamics at a hot-spot interface in RDX crystals. J Phys Chem 120:477–489

    Article  Google Scholar 

  106. Long Y, Chen J (2017) Theoretical study of the phonon–phonon scattering mechanism and the thermal conductive coefficients for energetic materials. Phil Mag 97(28):2575–2595

    Article  Google Scholar 

  107. Sellan D, Landry E, Turney J, McGaughey A, Amon C (2010) Size effects in molecular dynamics thermal conductivity. Phys Rev B 81:214305-1–214305-10

    Article  Google Scholar 

  108. Kremer RK, Graf K, Cardona M, Devyatykh GG, Gusev AV, Gibin AM, Inyushkin AV, Taldenkov AN, Pohl HJ (2004) Thermal conductivity of isotopically enriched 28Si: revisited. Solid State Commun 131:499–503

    Article  Google Scholar 

  109. Klemens PG (1981) Theory of lattice thermal conductivity: role of low-frequency phonons. Int J Thermophys 2(1):55–62

    Article  Google Scholar 

  110. Picu RC (2002) The Peierls stress in non-local elasticity. J Mech Phys Solids 50:717–735

    Article  Google Scholar 

  111. Zbib H, Shehadeh M, Khan S, Karami G (2002) Multiscale dislocation dynamics plasticity. Washington State University, Pullman, WA

    Google Scholar 

  112. Garlick GFJ, Gibson AF (1948) The electron trap mechanism of luminescence in sulphide and silicate phophors. Proc Phys Soc 60(6):574–590

    Article  Google Scholar 

  113. Zhang Y, Brar V, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A, Crommie M (2008) Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat Phys 4:627–630

    Article  Google Scholar 

  114. Wolfe CM, Stillman GE, Lindley WT (1970) Electron mobility in high-purity GaAs. J Appl Phys 41(7):3088–3091

    Article  Google Scholar 

  115. Ishiwata S, Shiomi Y, Lee JS, Bahramy M, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y (2013) Extremely high electron mobility in a phonon-glass semimetal. Nat Mater 12:512–517

    Article  Google Scholar 

  116. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327

    Article  Google Scholar 

  117. Hall RN, Racette JH, Ehrenreich H (1960) Direct observation of polarons and phonons during tunneling in group 3-5 semiconductor junctions. Phys Rev Lett 4(9):456–458

    Article  Google Scholar 

  118. Chen JK, Latham WP, Beraun JE (2005) The role of electron–phonon coupling in ultrafast laser heating. J Laser Appl 17(1):63–68

    Article  Google Scholar 

  119. Stevens RJ, Zhigilei LV, Norris PM (2007) Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium molecular dynamics simulations. Int J Heat Mass Transf 50(1):3977–3989

    Article  Google Scholar 

  120. Zhou XW, Jones RE, Kimmer CJ, Duda JC, Hopkins PE (2013) Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations. Phys Rev B 87(9):094303-1–094303-17

    Article  Google Scholar 

  121. Merabia S, Termentzidis K (2012) Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Phys Rev B 86(9):094303-1–094303-16

    Article  Google Scholar 

  122. Merabia S, Termentzidis K (2014) Thermal boundary conductance across rough interfaces probed by molecular dynamics. Phys Rev B 89(5):054309-1–054309-9

    Article  Google Scholar 

  123. Prasher RS, Phelan PE (2001) A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J Heat Transf 123(1):105–112

    Article  Google Scholar 

  124. Dames C, Chen G (2004) Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys 95(2):682–693

    Article  Google Scholar 

  125. Reddy P, Castelino K, Majumdar A (2005) Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion. Appl Phys Lett 87(21):211908-1–211908-3

    Article  Google Scholar 

  126. Hopkins PE (2009) Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces. J Appl Phys 106(1):013528-1–013528-9

    Article  Google Scholar 

  127. Duda JC, Beechem TE, Smoyer JL, Norris PM, Hopkins PE (2010) Role of dispersion on phononic thermal boundary conductance. J Appl Phys 108(7):073515-1–073515-10

    Article  Google Scholar 

  128. Beechem T, Hopkins PE (2009) Predictions of thermal boundary conductance for systems of disordered solids and interfaces. J Appl Phys 106(12):124301-1–124301-8

    Article  Google Scholar 

  129. Duda JC, Norris PM, Hopkins PE (2011) On the linear temperature dependence of phonon thermal boundary conductance in the classical limit. J Heat Transf 133(1):074501-1–074501-4

    Google Scholar 

  130. Kazan M (2011) Interpolation between the acoustic mismatch model and the diffuse mismatch model for the interface thermal conductance: application to InN/GaN superlattice. J Heat Transf 133(1):112401-1–112401-7

    Google Scholar 

  131. Little WA (1959) The transport of heat between dissimilar solids at low temperatures. Can J Phys 37(3):334–349

    Article  Google Scholar 

  132. Tien CL, Majumdar A, Gerner FM (1998) Microscale energy transport. Taylor & Francis, Washington

    Google Scholar 

  133. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668

    Article  Google Scholar 

  134. Hopkins PE, Duda JC, Norris PM (2011) Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance. J Heat Transf 133(1):062401-1–062401-11

    Google Scholar 

  135. Saaskilahti K, Oksanen J, Tulkki J, Volz S (2014) Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys Rev B 90(13):134312-1–134312-8

    Article  Google Scholar 

  136. Duda JC, Hopkins PE, Smoyer JL, Bauer ML, English TS, Saltonstall CB, Norris PM (2010) On the assumption of detailed balance in prediction of diffusive transmission probability during interfacial transport. Nanoscale Microscale Thermophys Eng 14(1):21–33

    Article  Google Scholar 

  137. Beechem T, Graham S, Hopkins P, Norris P (2007) Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Appl Phys Lett 90(5):054104-1–054104-3

    Article  Google Scholar 

  138. Young DA, Maris HJ (1989) Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys Rev B 40(6):3685–3693

    Article  Google Scholar 

  139. Stoner RJ, Maris HJ (1993) Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys Rev B 48(22):373–387

    Article  Google Scholar 

  140. Singh D, Murthy JY, Fisher TS (2011) Effect of phonon dispersion on thermal conduction across Si/Ge interfaces. J Heat Transf 133(1):1–17

    Google Scholar 

  141. Minnich AJ, Chen G, Mansoor S, Yilbas BS (2011) Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation. Phys Rev B 84(23):235207-1–235207-8

    Article  Google Scholar 

  142. Hopkins PE, Beechem T, Duda JC, Khalid H, Hattar K, Ihlefeld J, Rodriguez MA, Piekos ES (2011) Influence of anisotropy on thermal boundary conductance at solid interfaces. Phys Rev B 84(12):125408-1–125408-7

    Article  Google Scholar 

  143. Duda JC, Smoyer JL, Norris PM, Hopkins PE (2009) Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials. Appl Phys Lett 95(3):031912-1–031912-3

    Article  Google Scholar 

  144. Su Z, Freedman JP, Leach JH, Preble EA, Davis RF, Malen JA (2013) The impact of film thickness and substrate surface roughness on the thermal resistance of aluminum nitride nucleation layers. J Appl Phys 113(21):213502-1–213502-5

    Article  Google Scholar 

  145. Baker CH, Jordan DA, Norris PM (2012) Application of the wavelet transform to nanoscale thermal transport. Phys Rev B 86(10):104306-1–104306-11

    Article  Google Scholar 

  146. Deng B, Chernatynskiy A, Khafizov M, Hurley DH, Phillpot SR (2014) Kapitza resistance of Si/SiO2 interface. J Appl Phys 115(8):084910-1–084910-7

    Google Scholar 

  147. Gordiz K, Henry A (2015) A formalism for calculating the modal contributions to thermal interface conductance. New J Phys 17(10):1–10

    Article  Google Scholar 

  148. Gordiz K, Henry A (2016) Phonon transport at interfaces: determining the correct modes of vibration. J Appl Phys 119(1):015101-1–015101-12

    Article  Google Scholar 

  149. Gordiz K, Henry A (2016) Phonon transport at crystalline Si/Ge interfaces: the role of interfacial modes of vibration. Sci Rep 6(1):23139-1–23139-9

    Article  Google Scholar 

  150. Termentzidis K, Chantrenne P, Keblinski P (2009) Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces. Phys Rev B 79(21):214307-1–214307-9

    Article  Google Scholar 

  151. Rajabpour A, Volz S (2010) Thermal boundary resistance from mode energy relaxation times: case study of argon-like crystals by molecular dynamics. J Appl Phys 108(9):094324-1–094324-8

    Article  Google Scholar 

  152. Huberman SC, Larkin JM, McGaughey AJH, Amon CH (2013) Disruption of superlattice phonons by interfacial mixing. Phys Rev B 88(15):155311-1–155311-12

    Article  Google Scholar 

  153. Li X, Yang R (2012) Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys Rev B 86(5):054305-1–054305-13

    Google Scholar 

  154. Lu S, McGaughey AJH (2015) Thermal conductance of superlattice junctions. AIP Adv 5(5):053205-1–053205-12

    Google Scholar 

  155. Wallis RF (1994) Surface phonons: theoretical developments. Surf Sci 299:612–627

    Article  Google Scholar 

  156. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171

    Article  Google Scholar 

  157. Balandin A, Wang KL (1998) Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J Appl Phys 84(11):6149–6153

    Article  Google Scholar 

  158. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    Article  Google Scholar 

  159. Asheghi M, Leung YK, Wong SS, Goodson KE (1997) Phonon-boundary scattering in thin silicon layers. Appl Phys Lett 71(13):1798–1800

    Article  Google Scholar 

  160. Balandin A, Wang KL (1988) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58(3):1544–1549

    Article  Google Scholar 

  161. Hopkins PE, Reinke CM, Su MF, Olsson RH III, Shaner EA, Leseman ZC, El-Kady I (2010) Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett 11(1):107–112

    Article  Google Scholar 

  162. Ruppin R, Englman R (1970) Optical phonons of small crystals. Rep Prog Phys 33(1):149–196

    Article  Google Scholar 

  163. Genzel L, Martin TP (1973) Infrared absorption by surface phonons and surface plasmons in small crystals. Surf Sci 34(1):33–49

    Article  Google Scholar 

  164. Dash WC, Newman R (1955) Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Phys Rev 99(4):1151

    Article  Google Scholar 

  165. Schluter M, Lannoo M, Needels M, Baraff GA, Tomanek D (1992) Electron–phonon coupling and superconductivity in alkali-intercalated C60 solid. Phys Rev Lett 68(4):526–529

    Article  Google Scholar 

  166. Schlesinger Z, Collins RT, Kaiser DL, Holtzberg F (1987) Superconducting energy gap and normal-state reflectivity of single crystal Y–Ba–Cu–O. Phys Rev Lett 59(17):1958–1961

    Article  Google Scholar 

  167. Gaspar DJ, Hanbicki AT, Sibener SJ (1998) Inelastic multiphonon helium scattering from a stepped Ni(977) surface. J Chem Phys 109:6947–6955

    Article  Google Scholar 

  168. Niu L, Gaspar DJ, Sibener SJ (1995) Phonons localized at step edges: a Route to understanding forces at extended surface defects. Science 268:847–850

    Article  Google Scholar 

  169. Nave S, Jackson B (2007) Methane dissociation on Ni(111): the role of lattice reconstruction. Phys Rev Lett 98:173003-1–173003-4

    Article  Google Scholar 

  170. Kobayashi K (2002) Solid-state ionic reactions. In: Toda F (ed) Organic solid state reactions. Springer, Dordrecht, pp 69–108

  171. Hurst WS, Frankl DR (1969) Thermal conductivity of silicon in the boundary scattering regime. Phys Rev 186(3):801–810

    Article  Google Scholar 

  172. Sadhu J, Sinha S (2011) Room-temperature phonon boundary scattering below the Casimir limit. Phys Rev B 84(11):115450-1–115450-6

    Article  Google Scholar 

  173. Bungaro C, de Gironcoli S, Baroni S (1996) Theory of the anomalous Rayleigh dispersion at H/W (110) surfaces. Phys Rev Lett 77(12):2491–2494

    Article  Google Scholar 

  174. Kohler B, Ruggerone P, Scheffler M (1997) Ab initio study of the anomalies in the He-atom-scattering spectra of H/Mo (110) and H/W (110). Phys Rev B 56(20):503–518

    Article  Google Scholar 

  175. Fritsch J, Eckert A, Pavone P, Schroder U (1995) Structure and dynamics of hydrogenated GaAs (110) and InP (110) surfaces. J Phys Condens Matter 7(40):7717–7728

    Article  Google Scholar 

  176. Bertoni CM, Shkrebtii AI, Di Felice R, Finocchi F (1993) Structural and dynamical properties of surfaces from ab initio molecular dynamics. Prog Surf Sci 42(1):319–330

    Article  Google Scholar 

  177. Fu CL, Freeman AJ, Wimmer E, Weinert M (1985) Frozen-phonon total-energy determination of structural surface phase transitions: W (001). Phys Rev Lett 54(20):2261–2264

    Article  Google Scholar 

  178. Grimes CC, Adams G (1979) Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys Rev Lett 42(12):795–798

    Article  Google Scholar 

  179. Daum W, Stuhlmann C, Ibach H (1988) Displacive phase transition and surface-phonon anomalies in fcc Fe films on Cu (100). Phys Rev Lett 60(26):2741–2744

    Article  Google Scholar 

  180. Shen S, Narayanaswamy A, Chen G (2009) Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett 9(8):2909–2913

    Article  Google Scholar 

  181. Le Gall J, Olivier M, Greffet JJ (1997) Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton. Phys Rev B 55(15):10105–10114

    Article  Google Scholar 

  182. Chen DZA, Narayanaswamy A, Chen G (2005) Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films. Phys Rev B 72(15):1–4

    Google Scholar 

  183. Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS et al (2014) Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343(6175):1125–1129

    Article  Google Scholar 

  184. Hellsing B, Eiguren A, Chulkov EV (2002) Electron–phonon coupling at metal surfaces. J Phys Condens Matter 14(24):5959–5977

    Article  Google Scholar 

  185. Cohen RE, Pickett WE, Krakauer H (1990) Theoretical determination of strong electron–phonon coupling in YBa2 Cu3O7. Phys Rev Lett 64(21):2575–2578

    Article  Google Scholar 

  186. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc 1(1):4–11

    Article  Google Scholar 

  187. Stoneley R (1955) The propagation of surface elastic waves in a cubic crystal. Proc R Soc Lond A Math Phys Eng Sci 232(1191):447–458

  188. Gazis DC, Herman R, Wallis RF (1960) Surface elastic waves in cubic crystals. Phys Rev 119(2):533–544

    Article  Google Scholar 

  189. Lim TC, Farnell GW (1969) Character of pseudo surface waves on anisotropic crystals. J Acoust Soc Am 45(4):845–851

    Article  Google Scholar 

  190. Lim TC, Farnell GW (1968) Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals. J Appl Phys 39(9):4319–4325

    Article  Google Scholar 

  191. Kliewer KL, Fuchs R (1996) Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region. Phys Rev 144(2):495–503

    Article  Google Scholar 

  192. Kliewer KL, Fuchs R (1996) Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region. Phys Rev 150(2):573–588

    Article  Google Scholar 

  193. Wallis RF (1957) Effect of free ends on the vibration frequencies of one-dimensional lattices. Phys Rev 105(2):540–545

    Article  Google Scholar 

  194. Eckl C, Fritsch J, Pavone P, Schro U (1997) Ab initio calculation of phonons in GaP (110) and InAs (110) and trends within III–V (110) surfaces. Surf Sci 394(1–3):47–59

    Article  Google Scholar 

  195. Fritsch J, Pavone P (1995) Ab initio calculation of the structure, electronic states, and the phonon dispersion of the Si (100) surface. Surf Sci 344(1–2):159–173

    Article  Google Scholar 

  196. Allan DC, Mele EJ (1984) Surface vibrational excitations on Si (001) 2 × 1. Phys Rev Lett 53(8):826–829

    Article  Google Scholar 

  197. Nelson JS, Daw MS, Sowa EC (1989) Cu (111) and Ag (111) surface-phonon spectrum: the importance of avoided crossings. Phys Rev B 40(3):1465–1480

    Article  Google Scholar 

  198. Dal Corso A (2001) Density-functional perturbation theory with ultrasoft pseudopotentials. Phys Rev B 64(23):1–17

    Google Scholar 

  199. Bortolani V, Franchini A, Santoro G, Toennies JP, Wöll C, Zhang G (1989) Surface phonons on the Pt (111) surface: a comparison of He-scattering experiments with lattice-dynamical calculations. Phys Rev B 40(6):3524–3545

    Article  Google Scholar 

  200. Allen RE, Alldredge GP, De Wette FW (1661) Studies of vibrational surface modes. II. Monatomic fcc crystals. Phys Rev B 4(6):1661–1681

    Article  Google Scholar 

  201. Allen RE, Alldredge GP, De Wette FW (1969) Surface modes of vibration in monatomic crystals. Phys Rev Lett 23(22):1285–1287

    Article  Google Scholar 

  202. Allen RE, Alldredge GP, De Wette FW (1971) Studies of vibrational surface modes. I. General formulation. Phys Rev B 4(6):1648–1660

    Article  Google Scholar 

  203. Tong SY, Maradudin AA (1969) Normal modes of a semi-infinite ionic crystal. Phys Rev 181(3):1318–1335

    Article  Google Scholar 

  204. Chen TS, Alldredge GP, De Wette FW, Allen RE (1971) Surface and pseudosurface modes in ionic crystals. Phys Rev Lett 26(25):1543–1546

    Article  Google Scholar 

  205. Chen TS, Alldredge GP, de Wette FW (1972) Distribution of surface phonon branches in RbF and RbCl. Solid State Commun 10(10):941–945

    Article  Google Scholar 

  206. Kress W, De Wette FW, Kulkarni AD, Schröder U (1987) Surface dynamics of relaxed (001) slabs of alkali halides and MgO. Phys Rev B 35(11):5783–5794

    Article  Google Scholar 

  207. Benedek G (1976) The Green function approach to the surface lattice dynamics of ionic crystals. Surf Sci 61(2):603–634

    Article  Google Scholar 

  208. Maradudin AA, Melngailis J (1964) Some dynamical properties of surface atoms. Phys Rev 133(4A):A1188–A1193

    Article  Google Scholar 

  209. Croitoru M, Grecu D (1973) Application of the Green’s function method to lattice vibrations in thin films. Surf Sci 38(1):60–76

    Article  Google Scholar 

  210. Musser SW, Rieder KH (1970) Influence of surface force-constant changes on surface-mode frequencies. Phys Rev B 2(8):3034–3039

    Article  Google Scholar 

  211. Weisburgh RE, Chung PW (2017) Parameterized and systematically assembled operators for lattice defect dynamics. Int J Solids Struct 110–111:178–191

  212. Benedek G, Miglio L (1991) The Green’s function method in the surface lattice dynamics of ionic crystals. Springer, Berlin Heidelberg, pp 37–66

    Google Scholar 

  213. Manson R, Celli V (1971) Inelastic surface scattering of non-penetrating particles. Surf Sci 24(2):495–514

    Article  Google Scholar 

  214. Benedek G (1975) Van Hove singularities of the surface phonon density from inelastic reflection of atoms. Phys Rev Lett 35(4):234–237

    Article  Google Scholar 

  215. Ibach H (1970) Optical surface phonons in zinc oxide detected by slow-electron spectroscopy. Phys Rev Lett 24(25):1416–1418

    Article  Google Scholar 

  216. Lucas AA, Šunjić M (1972) Fast-electron spectroscopy of collective excitations in solids. Prog Surf Sci 2:75–137

    Article  Google Scholar 

  217. Mills DL, Maradudin AA, Burstein E (1968) Theory of the Raman effect in metals. Phys Rev Lett 21(16):1178–1182

    Article  Google Scholar 

  218. Martin TP, Genzel L (1973) Raman scattering in small crystals. Phys Rev B 8(4):1630–1635

    Article  Google Scholar 

  219. Heyes DM, Barber M, Clarke JHR (1977) Molecular dynamics computer simulation of surface properties of crystalline potassium chloride. J Chem Soc Faraday Trans Mol Chem Phys 73(7):1485–1496

    Article  Google Scholar 

  220. Yang L, Rahman TS, Daw MS (1991) Surface vibrations of Ag (100) and Cu (100): a molecular-dynamics study. Phys Rev B 44(24):13725–13733

    Article  Google Scholar 

  221. Gester M, Kleinhesselink D, Ruggerone P, Toennies JP (1994) Combined helium-atom-scattering and molecular-dynamics study of aluminum surface-phonon anharmonicities and linewidths. Phys Rev B 49(8):5777–5780

    Article  Google Scholar 

  222. Yang J, Hu W, Zhao D (2004) Temperature dependence of atomic relaxation and vibrations for the vicinal Ni (977) surface: a molecular dynamics study. Surf Sci 572(2):439–448

    Article  Google Scholar 

  223. Wang CZ, Fasolino A, Tosatti E (1988) Molecular-dynamics theory of the temperature-dependent surface phonons of W (001). Phys Rev B 37(4):2116–2122

    Article  Google Scholar 

  224. Ravelo R, El-Batanouny M (1989) Molecular-dynamics study of the reconstructed Au (111) surface: low temperature. Phys Rev B 40(14):9574–9589

    Article  Google Scholar 

  225. Yang L, Rahman TS (1991) Enhanced anharmonicity on Cu (110). Phys Rev Lett 67(17):2327–2330

    Article  Google Scholar 

  226. Raphuthi AM, Wang XQ, Ercolessi F, Adams JB (1995) Temperature dependence of surface phonons of Al (110). Phys Rev B 52(8):R5554–R5557

    Article  Google Scholar 

  227. Weakliem PC, Carter EA (1992) Constant temperature molecular dynamics simulations of Si (100) and Ge (100): equilibrium structure and short-time behavior. J Chem Phys 96(4):3240–3250

    Article  Google Scholar 

  228. Fuchs R, Kliewer KL (1965) Optical modes of vibration in an ionic crystal slab. Phys Rev 140(6A):A2076–A2088

    Article  Google Scholar 

  229. Kern K, David R, Palmer RL, Comsa G, Rahman TS (1986) Surface phonon dispersion of platinum (111). Phys Rev B 33(6):4334–4337

    Article  Google Scholar 

  230. Lehwald S, Wolf F, Ibach H, Hall BM, Mills DL (1987) Surface vibrations on Ni (110): the role of surface stress. Surf Sci 192(1):131–162

    Article  Google Scholar 

  231. Mohamed MH, Kesmodel LL, Hall BM, Mills DL (1988) Surface phonon dispersion on Cu (111). Phys Rev B 37(5):2763–2765

    Article  Google Scholar 

  232. Bortolani V, Santoro G, Harten U, Toennies JP (1984) Surface phonon calculations for noble metals: comparison with he-surface scattering experiments. Surf Sci 148(1):82–89

    Article  Google Scholar 

  233. Bortolani V, Franchini A, Nizzoli F, Santoro G (1984) Explanation of the anomalous peak observed in He-atom scattering from Ag (111). Phys Rev Lett 52(6):429–432

    Article  Google Scholar 

  234. Black JE, Franchini A, Bortolani V, Santoro G, Wallis RF (1987) Surface-phonon dispersion on Cu (110): a comparison of experiment and theory. Phys Rev B 36(6):2996–3001

    Article  Google Scholar 

  235. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453

    Article  Google Scholar 

  236. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285–1288

    Article  Google Scholar 

  237. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983–7991

    Article  Google Scholar 

  238. Ercolessi F, Tosatti E, Parrinello M (1986) Au (100) surface reconstruction. Phys Rev Lett 57(6):719–722

    Article  Google Scholar 

  239. Jacobsen KW, Norskov JK, Puska MJ (1987) Interatomic interactions in the effective-medium theory. Phys Rev B 35(14):7423–7442

    Article  Google Scholar 

  240. Ditlevsen PD, Stoltze P, No JK (1991) Anharmonicity and disorder on the Cu (110) surface. Phys Rev B 44(23):13002–13009

    Article  Google Scholar 

  241. Ditlevsen PD, Nørskov JK (1990) The surface phonons of Cu (111). J Electron Spectrosc Relat Phenom 54:237–244

    Article  Google Scholar 

  242. Hamad BA (2008) Structural and dynamical properties of Ru (0001) surface. Surf Sci 602(24):3654–3659

    Article  Google Scholar 

  243. Goldammer W, Ludwig W (1988) Surface phonons on Si (111) in comparison to EELS experiments. Phys Lett A 133(1–2):85–88

    Article  Google Scholar 

  244. Goldammer W, Ludwig W, Zierau W, Falter C (1984) Surface phonons and reconstruction of a silicon surface. Surf Sci 141(1):139–157

    Article  Google Scholar 

  245. Weber W (1974) New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys Rev Lett 33(6):371–374

    Article  Google Scholar 

  246. Tütüncü HM, Srivastava GP (1996) Phonon dispersion on a GaAs (110) surface studied using the adiabatic bond charge model. J Phys Condens Matter 8(10):1345–1358

    Article  Google Scholar 

  247. Tütüncü HM, Srivastava GP (1997) Theory of localized phonons on III–V (110) surfaces. J Phys Chem Solids 58(4):685–694

    Article  Google Scholar 

  248. Santini P, Miglio L, Benedek G, Ruggerone P (1991) Surface phonon dispersion curves in GaAs (110) and Ge (111) 2 × 1: a critical comparison. Surf Sci 241(3):346–352

    Article  Google Scholar 

  249. Miglio L, Santini P, Ruggerone P, Benedek G (1989) Dynamics of extensively reconstructed surfaces: Si (111) 2 × 1. Phys Rev Lett 62(26):3070–3073

    Article  Google Scholar 

  250. Chadi DJ (1978) Energy-minimization approach to the atomic geometry of semiconductor surfaces. Phys Rev Lett 41(15):1062–1065

    Article  Google Scholar 

  251. Alerhand OL, Mele EJ (1987) Surface reconstruction and vibrational excitations of Si (001). Phys Rev B 35(11):5533–5546

    Article  Google Scholar 

  252. Allan DC, Mele EJ (1985) Surface reconstruction and lattice dynamics of hydrogenated Si (001): 2 × 1. Phys Rev B 31(8):5565–5568

    Article  Google Scholar 

  253. Mazur A, Pollmann J (1990) Anisotropy of the mean-square displacements at the Si (001)-(2 × 1) surface. Surf Sci 225(1–2):72–80

    Article  Google Scholar 

  254. Ho KM, Bohnen KP (1986) First-principles calculation of surface phonons on the Al (110) surface. Phys Rev Lett 56(9):934–937

    Article  Google Scholar 

  255. Ho KM, Bohnen KP (1988) Surface-phonon calculations for the Al (110) surface. Phys Rev B 38(18):12897–12902

    Article  Google Scholar 

  256. Schöchlin J, Bohnen KP, Ho KM (1995) Structure and dynamics at the Al (111)-surface. Surf Sci 324(2–3):113–121

    Article  Google Scholar 

  257. Rodach T, Bohnen KP, Ho KM (1989) First-principles study of the Na (110) surface. Surf Sci 209(3):481–491

    Article  Google Scholar 

  258. Chen Y, Tong SY, Kim JS, Kesmodel LL, Rodach T, Bohnen KP, Ho KM (1991) Characterization of surface phonons on Cu (001) and Ag (001): first-principles phonon calculations with experimental and theoretical studies of high-resolution electron-energy-loss spectra. Phys Rev B 44(20):11394–11401

    Article  Google Scholar 

  259. Rodach T, Bohnen KP, Ho KM (1993) First principles calculations of lattice relaxation at low index surfaces of Cu. Surf Sci 286(1–2):66–72

    Article  Google Scholar 

  260. Lahee AM, Toennies JP, Wöll C, Bohnen KP, Ho KM (1989) Comparison of helium atom scattering surface phonon dispersion curves of the (1 × 2) reconstructed Au (110) surface with first-principle calculations. EPL (Europhys Lett) 10(3):261–268

    Article  Google Scholar 

  261. Bohnen KP, Eichler A, Hafner J (1996) First principles calculations of surface phonons on Rh (111). Surf Sci 368(1–3):222–225

    Article  Google Scholar 

  262. Yamamoto M, Chan CT, Ho KM, Naito S (1996) First-principles calculation of oxygen adsorption on Zr (0001) surface: possible site occupation between the second and the third layer. Phys Rev B 54(19):14111–14120

    Article  Google Scholar 

  263. Rodach T, Bohnen KP, Ho KM (1993) First principles calculations of surface phonons for Cu (110). Surf Sci 296(1):123–129

    Article  Google Scholar 

  264. Schmidt WG, Bechstedt F, Srivastava GP (1995) III–V (110) surface dynamics from an ab initio frozen-phonon approach. Phys Rev B 52(3):2001–2007

    Article  Google Scholar 

  265. Ho K-M, Fu CL, Harmon BN (1984) Vibrational frequencies via total-energy calculations. Applications to transition metals. Phys Rev B 29(4):1575–1587

    Article  Google Scholar 

  266. Eguiluz AG (1987) Lattice relaxation at an aluminum surface: self-consistent linear-electronic-response approach. Phys Rev B 35(11):5473–5486

    Article  Google Scholar 

  267. Gaspar JA, Eguiluz AG (1989) Microscopic theory of surface phonons in Al (100): mechanisms for the anomalous behavior of the dispersion curves for large wave vectors. Phys Rev B 40(17):11976–11979

    Article  Google Scholar 

  268. Giannozzi P, De Gironcoli S, Pavone P, Baroni S (1991) Ab initio calculation of phonon dispersions in semiconductors. Phys Rev B 43(9):7231–7242

    Article  Google Scholar 

  269. Zein NE (1992) Ab initio calculations of phonon dispersion curves. Application to Nb and Mo. Phys Lett A 161(6):526–530

    Article  Google Scholar 

  270. Xie J, de Gironcoli S, Baroni S, Scheffler M (1999) First-principles calculation of the thermal properties of silver. Phys Rev B 59(2):965–969

    Article  Google Scholar 

  271. Lazzeri M, de Gironcoli S (1998) Ab-initio dynamical properties of the Be (0001) surface. Surf Sci 402:715–718

    Article  Google Scholar 

  272. Lazzeri M, de Gironcoli S (2000) Ab initio study of Be (1010) surface dynamical properties. Surf Sci 454:442–446

    Article  Google Scholar 

  273. Hofmann P, Plummer EW, Bungaro C, Kress W (2000) Surface lattice dynamics of Mg (0001). Phys Rev B 62(24):17012–17019

    Article  Google Scholar 

  274. Fritsch J, Pavone P, Schröder U (1993) Ab initio calculation of surface phonons in GaAs (110). Phys Rev Lett 71(25):4194–4197

    Article  Google Scholar 

  275. Fritsch J, Pavone P, Schröder U (1995) Ab initio calculation of the phonon dispersion in bulk InP and in the InP (110) surface. Phys Rev B 52(15):11326–11334

    Article  Google Scholar 

  276. Eckl C, Honke R, Fritsch J, Pavone P, Schröder U (1997) Ab initio calculation of phonons in semiconductor surfaces. Zeitschrift für Physik B Condensed Matter 104(4):715–720

    Article  Google Scholar 

  277. Nardelli MB, Cvetko D, De Renzi V, Floreano L, Morgante A, Peloi M, Tommasini F (1995) Low-energy vibrations at the InSb (110) surface. Phys Rev B 52(23):16720–16726

    Article  Google Scholar 

  278. Stigler W, Pavone P, Schröder U, Fritsch J, Brusdeylins G, Wach T, Toennies JP (1997) Manifestation of the Dimer correlation in the phonon dispersion of Ge (001). Phys Rev Lett 79(6):1090–1093

    Article  Google Scholar 

  279. Shkrebtii AI, Di Felice R, Bertoni CM, Del Sole R (1995) Ab initio study of structure and dynamics of the Si (100) surface. Phys Rev B 51(16):11201–11204

    Article  Google Scholar 

  280. Casimir HBG (1938) Note on the conduction of heat in crystals. Physica 5(6):495–500

    Article  Google Scholar 

  281. Campisi GJ, Frankl DR (1974) Effects of etching and oxidation on the thermal conductivity of germanium. Phys Rev B 10(6):2644–2646

    Article  Google Scholar 

  282. Liu W, Asheghi M (2004) Phonon–boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 84(19):3819–3821

    Article  Google Scholar 

  283. Martin P, Aksamija Z, Pop E, Ravaioli U (2009) Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett 102(12):1–4

    Article  Google Scholar 

  284. Santamore DH, Cross MC (2001) Effect of surface roughness on the universal thermal conductance. Phys Rev B 63(18):1–6

    Article  Google Scholar 

  285. Carrillo-Nunez H, Rhyner R, Luisier M, Schenk A (2016) Effect of surface roughness and phonon scattering on extremely narrow InAs-Si Nanowire TFETs. In: Solid-state device research conference (ESSDERC), 2016 46th European, pp 188–191

  286. Xie G, Guo Y, Li B, Yang L, Zhang K, Tang M, Zhang G (2013) Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires. Phys Chem Chem Phys 15(35):14647–14652

    Article  Google Scholar 

  287. Ghossoub MGKVV, Seong M, Azeredo B, Hsu K, Sadhu JS, Singh PK, Sinha S (2013) Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires. Nano Lett 13(4):1564–1571

    Article  Google Scholar 

  288. Lin I-T, Liu J-M (2013) Surface polar optical phonon scattering of carriers in graphene on various substrates. Appl Phys Lett 103(8):1–5

    Google Scholar 

  289. Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5(10):718–721

    Article  Google Scholar 

  290. Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S, Nomura M (2017) Heat conduction tuning by wave nature of phonons. Sci Adv 3(8):1–6

    Article  Google Scholar 

  291. Van Hove MA, Somorjai GA (1980) A new microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step and kink structures. Surf Sci 92(2–3):489–518

    Article  Google Scholar 

  292. Balden M, Lehwald S, Ibach H, Ormeci A, Mills DL (1992) Shear horizontal phonons on Ni (110). Phys Rev B 46(7):4172–4179

    Article  Google Scholar 

  293. Yater JE, Kulkarni AD, de Wette FW, Erskine JL (1990) Surface phonons of Ag (110): the importance of odd-symmetry modes in seeking accurate interaction models. J Electron Spectrosc Relat Phenom 54:395–404

    Article  Google Scholar 

  294. Zeppenfeld P, Kern K, David R, Kuhnke K, Comsa G (1988) Lattice dynamics of Cu (110): high-resolution He-scattering study. Phys Rev B 38(17):12329–12337

    Article  Google Scholar 

  295. Benedek G, Toennies JP (1994) Helium atom scattering spectroscopy of surface phonons: genesis and achievements. Surf Sci 299:587–611

    Article  Google Scholar 

  296. Lock A, Toennies JP, Wöll C, Bortolani V, Franchini A, Santoro G (1988) Phonons at the surface of the nearly-free-electron metal Al (111): realization of an ideal surface. Phys Rev B 37(12):7087–7090

    Article  Google Scholar 

  297. Armand G, Masri P (1983) Localized surface modes and resonances for vicinal surfaces: the (117) face of fcc crystals. Surf Sci 130(1):89–123

    Article  Google Scholar 

  298. Black JE, Bopp P (1984) The vibration of atoms at high miller index surfaces: face centred cubic metals. Surf Sci 140(2):275–293

    Article  Google Scholar 

  299. Tian ZJ, Black JE (1994) Phonon spectra and mean square displacements on Cu (11n) vicinal surfaces. Surf Sci 303(3):395–408

    Article  Google Scholar 

  300. Durukanog-Tildelu S, Kara A, Rahman TS (1997) Local structural and vibrational properties of stepped surfaces: Cu (211), Cu (511), and Cu (331). Phys Rev B 55(20):13894–13903

    Article  Google Scholar 

  301. Sklyadneva IY, Rusina GG, Chulkov EV (1998) Vibrational states on vicinal surfaces of Al, Ag, Cu and Pd. Surf Sci 416(1):17–36

    Article  Google Scholar 

  302. Kalla R, Pollmann J (1988) Bond-angle relaxation and electronic structure of Si and Ge overlayers on (110) surfaces of III–V semiconductors. Surf Sci 200(1):80–100

    Article  Google Scholar 

  303. Kitahara K, Metiu H, Ross J, Silbey R (1976) Dynamical theory of migration of an adsorbed atom on solid surfaces. J Chem Phys 65(7):2871–2882

    Article  Google Scholar 

  304. Shimada T, Ohtomo M, Suzuki T, Hasegawa T, Ueno K, Ikeda S, Saiki K, Sasaki M, Inaba K (2008) Step-bunched Bi-terminated Si (111) surfaces as a nanoscale orientation template for quasisingle crystalline epitaxial growth of thin film phase pentacene. Appl Phys Lett 93(22):1–3

    Article  Google Scholar 

  305. Ossó JO, Schreiber F, Kruppa V, Dosch H, Garriga M, Alonso MI, Cerdeira F (2002) Controlled molecular alignment in phthalocyanine thin films on stepped sapphire surfaces. Adv Func Mater 12(6–7):455–460

    Article  Google Scholar 

  306. Desai TV, Woll AR, Schreiber F, Engstrom JR (2010) Nucleation and growth of perfluoropentacene on self-assembled monolayers: significant changes in island density and shape with surface termination. J Phys Chem C 114(47):20120–20129

    Article  Google Scholar 

  307. Rivnay J, Jimison LH, Northrup JE, Toney MF, Noriega R, Lu S, Marks TJ, Facchetti A, Salleo A (2009) Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat Mater 8(12):952–958

    Article  Google Scholar 

  308. Bertoni CM, Nardelli MB, Bernardini F, Finocchi F, Molinari E (1990) Chemisorption of H on GaAs (110): a first-principles calculation. EPL (Europhys Lett) 13(7):653–658

    Article  Google Scholar 

  309. Zhu X, Louie SG (1992) Anharmonicity of the hydrogen-carbon stretch mode on diamond (111)-1 × 1. Phys Rev B 45(7):3940–3943

    Article  Google Scholar 

  310. Ancilotto F, Selloni A (1992) Hydrogen-induced dereconstruction of Si (111) 2 × 1 from first-principles molecular dynamics. Phys Rev Lett 68(17):2640–2643

    Article  Google Scholar 

  311. Gai H, Voth GA (1994) First-principles molecular dynamics study of surface vibrations and vibrational mode coupling on the H/Si (111) 1 × 1 surface. J Chem Phys 101(2):1734–1737

    Article  Google Scholar 

  312. Honke R, Fritsch J, Pavone P, Schröder U (1996) Electronic, structural, and dynamical properties of the GaAs (110): Ge surface. Phys Rev B 53(15):9923–9929

    Article  Google Scholar 

  313. Godin TJ, LaFemina JP, Duke CB (1991) Dynamical strain at semiconductor interfaces: structure and surface-atom vibrations of GaAs (110) and GaAs (110)–p (1 × 1)–Sb. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 9(4):2282–2289

    Article  Google Scholar 

  314. Schmidt WG, Srivastava GP (1994) First principles calculations of interface phonons of an Epitaxial Sb monolayer on GaAs (110) and InP (110). Solid State Commun 89(4):345–348

    Article  Google Scholar 

  315. Schmidt WG, Srivastava GP (1995) III–V (110) Sb (1 ML): structural and dynamical properties. Surf Sci 331:540–545

    Article  Google Scholar 

  316. Podila R, Vedantam P, Ke PC, Brown JM, Rao AM (2012) Evidence for charge-transfer-induced conformational changes in carbon nanostructure–protein corona. J Phys Chem C 116(41):22098–22103

    Article  Google Scholar 

  317. Hajipour MJ, Akhavan O, Meidanchi A, Laurent S, Mahmoudi M (2014) Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer. RSC Adv 4(107):62557–62565

    Article  Google Scholar 

  318. Wan S, Kelly PM, Mahon E, Stöckmann H, Rudd PM, Caruso F, Dawson KA, Yan Y, Monopol MP (2015) The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9(2):2157–2166

    Article  Google Scholar 

  319. Mudalige TK, Qu H, Linder SW (2015) Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: application for nanoparticles with a protein corona. Anal Chem 87(14):7395–7401

    Article  Google Scholar 

  320. Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromol 16(4):1311–1321

    Article  Google Scholar 

  321. Lehman SE, Mudunkotuwa IA, Grassian VH, Larsen SC (2016) Nano-bio interactions of porous and nonporous silica nanoparticles of varied surface chemistry: a structural, kinetic, and thermodynamic study of protein adsorption from RPMI culture medium. Langmuir 32(3):731–742

    Article  Google Scholar 

  322. Zhou Y, Strachan A (2009) Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for molecular dynamics simulations. J Chem Phys 131:1–9

    Google Scholar 

  323. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57

    Article  Google Scholar 

  324. Majumdar A, Reddy P (2004) Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl Phys Lett 84(23):4768–4770

    Article  Google Scholar 

  325. Hofmann P, Sklyadneva IY, Rienks EDL, Chulkov EV (2009) Electron–phonon coupling at surfaces and interfaces. New J Phys 11(12):1–29

    Article  Google Scholar 

  326. Eiguren A, Hellsing B, Chulkov EV, Echenique PM (2003) Phonon-mediated decay of metal surface states. Phys Rev B 67(23):1–17

    Article  Google Scholar 

  327. Eiguren A, Hellsing B, Reinert F, Nicolay G, Chulkov EV, Silkin VM, Echenique PM (2002) Role of bulk and surface phonons in the decay of metal surface states. Phys Rev Lett 88(6):1–4

    Article  Google Scholar 

  328. Guo Y, Zhang YF, Bao XY, Han TZ, Tang Z, Zhang LX, Jia JF (2004) Superconductivity modulated by quantum size effects. Science 306(5703):1915–1917

    Article  Google Scholar 

  329. Eiguren A, de Gironcoli S, Chulkov EV, Echenique PM, Tosatti E (2003) Electron–phonon interaction at the Be (0001) surface. Phys Rev Lett 91(16):1–4

    Article  Google Scholar 

  330. Sklyadneva IY, Chulkov EV, Echenique PM (2008) Electron–phonon interaction on an Al (001) surface. J Phys Condens Matter 20(16):1–6

    Article  Google Scholar 

  331. Leonardo A, Sklyadneva IY, Silkin VM, Echenique PM, Chulkov EV (2007) Ab initio calculation of the phonon-induced contribution to the electron-state linewidth on the Mg (0001) surface versus bulk Mg. Phys Rev B 76(3):1–7

    Article  Google Scholar 

  332. Giustino F (2017) Electron–phonon interactions from first principles. Rev Mod Phys 89(1):1–63

    Article  Google Scholar 

  333. Monserrat B, Drummond ND, Needs RJ (2013) Anharmonic vibrational properties in periodic systems: energy, electron–phonon coupling, and stress. Phys Rev B 87(14):1–10

    Article  Google Scholar 

  334. Monserrat B, Engel EA, Needs RJ (2015) Giant electron–phonon interactions in molecular crystals and the importance of nonquadratic coupling. Phys Rev B 92(14):1–6

    Article  Google Scholar 

  335. Gao HJ, Sohlberg K, Xue ZQ, Chen HY, Hou SM, Ma LP, Fang XW, Pang SJ, Pennycook SJ (2000) Reversible, nanometer-scale conductance transitions in an organic complex. Phys Rev Lett 84(8):1780–1783

    Article  Google Scholar 

  336. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286(5444):1550–1552

    Article  Google Scholar 

  337. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735

    Article  Google Scholar 

  338. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MV, Ruitenbeek JMV (2002) Measurement of the conductance of a hydrogen molecule. Nature 419(6910):906–909

    Article  Google Scholar 

  339. Radziemska E, Klugmann E (2002) Thermally affected parameters of the current–voltage characteristics of silicon photocell. Energy Convers Manag 43(14):1889–1900

    Article  Google Scholar 

  340. Madsen GKH, Singh DJ (2006) BoltzTraP: a code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    Article  Google Scholar 

  341. Li W, Carrete J, Katcho NA, Mingo N (2014) ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 185:1747–1758

    Article  Google Scholar 

  342. Chernatynskiy A, Phillpot SR (2015) Phonon transport simulator (PhonTS). Comput Phys Commun 192:196–204

    Article  Google Scholar 

  343. Beechem T, Duda JC, Hopkins PE, Norris PM (2010) Contribution of optical phonons to thermal boundary conductance. Appl Phys Lett 97(6):061907. doi:10.1063/1.3478844

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Army Research Office under Award W911NF-14-1-0330 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanGessel, F., Peng, J. & Chung, P.W. A review of computational phononics: the bulk, interfaces, and surfaces. J Mater Sci 53, 5641–5683 (2018). https://doi.org/10.1007/s10853-017-1728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1728-8

Navigation