Skip to main content
Log in

Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Approximated equations have been constructed to describe the temperature (T) dependence of the molar volumes (V) of fcc solid metals (Ag, Al, Au, Cu, Ir, Ni, Pb, Pd, Pt, and Rh) and their liquids below and above their melting points at standard pressure of 1 bar from zero Kelvin. Below the melting point, the following new approximated equation is suggested for both the solid and liquid metals: V = a + b * T (to the power of n), where a, b, and n are semi-empirical parameters (at n larger than 1; this equation obeys the boundary condition that the thermal expansion coefficient becomes zero at T = 0 K). This approximated equation reproduces the measured molar volume of solids from zero Kelvin to melting point with an accuracy of 0.2 % or better. As a compromise, the derivative of this equation reproduces the measured thermal expansion coefficient of solids only with an accuracy 10 % or better and only above 100 K. Above the melting point, the following well-known equation is used for both liquid and solid phases: V = c + d * T, where c and d are semi-empirical parameters. This equation implies that the thermal expansion coefficient above the melting point has an approximately constant value. It is found that the volume change upon melting extrapolated to zero K is about 58 % of that at the melting point for all the 10 fcc metals. The tabulated 4 equations (below and above the melting point/for fcc and liquid states) are provided for each of the 10 fcc metals. These equations will be useful for estimating phase equilibria of nano-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. the exception is Ni, for which the parameters of Table 1 in [22] are probably given with a misprint.

References

  1. Paradis PF, Ishikawa T, Lee GW, Holland-Moritz D, Brillo J, Rhim WK, Okada JT (2014) Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater Sci Eng R 76:1–53

    Article  Google Scholar 

  2. Kobatake H, Schmitz J, Brillo J (2014) Density and viscosity of ternary Al–Cu–Si liquid alloys. J Mater Sci 49:3541–3549. doi:10.1007/s10853-014-8072-z

    Article  Google Scholar 

  3. Poirier DR (2014) Density, viscosity, and diffusion coefficients in hypoeutectic Al–Si liquid alloys: an assessment of available data. Metal Mater Trans B. doi:10.1007/s11663-014-0037-8

    Google Scholar 

  4. Gancarz T, Moser Z, Gasior W, Pstrus J, Henein H (2011) A comparison of surface tension, viscosity, and density of Sn and Sn–Ag alloys using different measurement techniques. Int J Thermophys 32:1210–1233

    Article  Google Scholar 

  5. Terzieff P (2010) Some physico-chemical properties of liquid Ag–Sn–Zn. Phys. B 405:2668–2672

    Article  Google Scholar 

  6. Hallstedt B, Dupin N, Hillert M, Höglund L, Lukas HL, Schuster JC, Solak N (2007) Thermodynamic models for crystalline phases. Composition dependent model for volume, bulk modulus and thermal expansion. CALPHAD 31:28–37

    Article  Google Scholar 

  7. Kucharski M, Fima P (2004) The surface tension and density of Cu–Pb–Fe alloys. Arch Metall Mater 49:565–573

    Google Scholar 

  8. Lu XG, Selleby M, Sundman B (2005) Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc. CALPHAD 29:49–55

    Article  Google Scholar 

  9. Guenther G, Guillon O (2014) Models of size-dependent nanoparticle melting tested on gold. J Mater Sci 49:7915–7932. doi:10.1007/s10853-014-8544-1

    Article  Google Scholar 

  10. Lee J, Sim KJ (2014) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. CALPHAD 44:129–132

    Article  Google Scholar 

  11. Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607

    Article  Google Scholar 

  12. Junkaew A, Ham B, Zhang X, Arróyave R (2014) Tailoring the formation of metastable Mg through interfacial engineering: a phase stability analysis. CALPHAD 45:145–150

    Article  Google Scholar 

  13. Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram: prediction and experiment. CALPHAD 45:33–39

    Article  Google Scholar 

  14. Garzel G, Janczak-Rusch J, Zabdyr L (2012) Reassessment of the Ag–Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56

    Article  Google Scholar 

  15. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. doi:10.1007/s10853-012-6772-9

    Article  Google Scholar 

  16. Tang C, Sung YM, Lee J (2012) Nonlinear size-dependent melting of the silica-encapsulated silver nanoparticles. Appl Phys Lett 100:201903

    Article  Google Scholar 

  17. Koukkari P, Pajarre R, Hack K (2007) Constrained Gibbs energy minimization. Int J Mater Res 98:926–934

    Article  Google Scholar 

  18. Touloukian YS, Kirby RK, Taylor RE, Lee TYR (1977) Thermal expansion. IFI/Plenum, New York

    Book  Google Scholar 

  19. Emsley J (1989) The elements. Clarendon Press, Oxford

    Google Scholar 

  20. Lide DR (ed) (1993–1994) CRC Handbook of chemistry and physics. CRC Press, Boca Raton

  21. Iida I, Guthrie RIL (1993) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  22. Lu XG, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. CALPHAD 29:68–89

    Article  Google Scholar 

  23. Lu XG, Selleby M, Sundman B (2005) Theoretical modeling of molar volume and thermal expansion. Acta Mater 53:2259–2272

    Article  Google Scholar 

  24. Arblaster JW (1997) Crystallographic properties of platinum. Plat Met Rev 41:12–21

    Google Scholar 

  25. Arblaster JW (1997) Crystallographic properties of rhodium. Plat Met Rev 41:184–189

    Google Scholar 

  26. Arblaster JW (2006) Crystallographic properties of platinum. New methodology and erratum. Plat Met Rev 50:118–119

    Article  Google Scholar 

  27. Arblaster JW (2010) Crystallographic properties of iridium. Plat Met Rev 54:93–102

    Article  Google Scholar 

  28. Arblaster JW (2012) Crystallographic properties of palladium. Plat Met Rev 56:181–189

    Article  Google Scholar 

  29. Ishikawa T, Paradis PF, Fujii R, Saita Y, Yoda S (2005) Thermophysical property measurements of liquid and supercooled iridium by containerless methods. Int J Thermophys 26:893–904

    Article  Google Scholar 

  30. Paradis PF, Ishikawa T, Saita Y, Yoda S (2004) Containerless property measurements of liquid palladium. Int J Thermophys 25:1905–1921

    Article  Google Scholar 

  31. Ishikawa T, Paradis PF, Koike N (2006) Non-contact thermophysical property measurements of liquid and supercooled platinum. Jpn J Appl Phys 45:1719–1728

    Article  Google Scholar 

  32. Paradis PF, Ishikawa T, Yoda S (2003) Thermophysical property measurements of supercooled and liquid rhodium. Int J Thermophys 24:1121–1136

    Article  Google Scholar 

  33. Dinsdale AT (1991) SGTE data for pure elements. CALPHAD 15:317–425

    Article  Google Scholar 

  34. Paradis PF, Ishikawa T, Koike N (2008) Density of liquid gold measured by a non-contact method. Gold Bull 41:242–245

    Article  Google Scholar 

  35. Chung SK, Thiessen DB, Rhim WK (1996) A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev Sci Instrum 67:3175–3181

    Article  Google Scholar 

  36. Ishikawa T, Paradis PF, Saita Y (2004) Thermophysical property measurement of molten nickel using an electrostatic levitation furnace. J Jpn Inst Met 68:781–786

    Article  Google Scholar 

  37. Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals. Mater Sci Eng A 495:19–26

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Hungarian Academy of Science, under the grant number K101781 and the “Science and Industry: the road from scientific achievements to social benefits” TÁMOP-4.2.3.-12/1/KONV-2012-0029 project supported by the European Union and co-financed by the European Social Fund. This work was partially carried out in the framework of the Center of Applied Materials Science and Nano-Technology at the University of Miskolc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kaptay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaptay, G. Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50, 678–687 (2015). https://doi.org/10.1007/s10853-014-8627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8627-z

Keywords

Navigation