Skip to main content
Log in

Fluorene-based conjugated poly(arylene ethynylene)s containing heteroaromatic bicycles: preparation and electro-optical properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of high molecular weight fluorene-based soluble poly(arylene ethynylene)s (PAEs) have been prepared and characterized. The polymers consist of 2,5-bis(3-tetradecylthiophen-2-yl)-3a,6a-dihydrothieno[3,2-b]thiophene, 2,5-bis(3-tetradecylthiophen-2-yl)-3a,6a-dihydrothiazolo[5,4-d]thiazole, or 4,7-bis(3-tetradecylthiophen-2-yl)benzo[c] [1, 2, 5] thiadiazole unit with an electron donor 9,9-bis(2-ethylhexyl)-9H-fluorene unit connected via electron accepting ethynylene linkage. The molecular weights (M w) of the polymers were found to be in the range of 103600–179000 g/mol with polydispersity index (PDI) of 3.9–5.0. Optical and redox properties have been investigated by UV–visible, fluorescence spectroscopy, and cyclic voltammetry (CV) measurements. Combination of experimental and density functional theory (DFT) calculations indicated that the benzothiadiazole unit incorporated polymer has lowest band gap with most stable lowest unoccupied molecular orbital (LUMO) energy level. Polymer light emitting diode properties have been investigated for the polymer having highest molecular weight with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. Well-behaved diode characteristics with EL maxima at 600 nm were observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sirringhaus H (2014) 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335

    Article  Google Scholar 

  2. Palai AK, Lee J, Jea M, Hanah Na H, Shin TJ, Jang S, Park S-U, Pyo S (2014) Symmetrically functionalized diketopyrrolopyrrole with alkylated thiophene moiety: from synthesis to electronic devices applications. J Mater Sci 49:4215–4224

    Article  Google Scholar 

  3. Grimsdale AC, Chan K, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091

    Article  Google Scholar 

  4. Palai AK, Kumar A, Shashidhara KK, Mishra SP (2014) Polyalkylthiophene-containing electron donor and acceptor heteroaromatic bicycles: synthesis, photo-physical, and electroluminescent properties. J Mater Sci 49:2456–2464

    Article  Google Scholar 

  5. Liu J, Durstockb M, Dai L (2014) Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ Sci 7:1297–1306

    Article  Google Scholar 

  6. Gao J, Chen W, Dou L, Chen C-C, Chang W-H, Liu Y, Li G, Yang Y (2014) Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv Mater 26:3142–3147

    Article  Google Scholar 

  7. Balamurugan A, Reddy MLP, Jayakannan M (2013) π-Conjugated polymer-Eu3+ complexes: versatile luminescent molecular probes for temperature sensing. J Mater Chem A 1:2256–2266

    Article  Google Scholar 

  8. Niu Q, Gao K, Lin Z, Wu W (2013) Surface molecular-imprinting engineering of novel cellulose nanofibril/conjugated polymer film sensors towards highly selective recognition and responsiveness of nitroaromatic vapors. Chem Commun 49:9137–9139

    Article  Google Scholar 

  9. Bolduc A, Skene WG (2014) Direct preparation of electroactive polymers on electrodes and their use in electrochromic devices. Polym Chem 5:1119–1123

    Article  Google Scholar 

  10. Osterholm AM, Shen DE, Dyer AL, Reynolds JR (2013) Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl Mater Interfaces 5(24):13432–13440

    Article  Google Scholar 

  11. Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol Energy Mater Sol Cells 93:422–441

    Article  Google Scholar 

  12. Sandstorm A, Dam HF, Krebs FC, Edman L (2012) Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat Commun 3:1002. doi:10.1038/ncomms2002

  13. Egbe DAM, Neugebauer H, Sariciftci NS (2011) Alkoxy-substituted poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s: synthesis, electroluminescence and photovoltaic applications. J Mater Chem 21:1338–1349

    Google Scholar 

  14. Dallos T, Beckmann D, Brunklaus G, Baumgarten M (2011) Thiadiazoloquinoxaline-acetylene containing polymers as semiconductors in ambipolar field effect transistors. J Am Chem Soc 133:13898–13901

    Article  Google Scholar 

  15. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  Google Scholar 

  16. Zheng J, Swager TM (2005) Poly(arylene ethynylene)s in chemosensing and biosensing. Adv Polym Sci 177:151–179

    Article  Google Scholar 

  17. Davey AP, Elliott S, O’Conner O, Blau W (1995) New rigid backbone conjugated organic polymers with large fluorescence quantum yields. J Chem Soc, Chem Commun 14:1433–1434

    Article  Google Scholar 

  18. Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644

    Article  Google Scholar 

  19. Tekin E, Egbe DAM, Kranenburg JM, Ulbricht C, Rathgeber S, Birckner E, Rehmann N, Meerholz K, Schubert US (2008) Effect of side chain length variation on the optical properties of PPE-PPV hybrid polymers. Chem Mater 20:2727–2735

    Article  Google Scholar 

  20. Guo X, Watson MD (2011) Pyromellitic diimide-based donor-acceptor poly(phenylene ethynylene)s. Macromolecules 44:6711–6716

    Article  Google Scholar 

  21. Breen CA, Tischler Y, Bulovic V, Swager TM (2005) Highly efficient blue electroluminescence from poly(phenylene ethynylene) via energy transfer from a hole-transport matrix. Adv Mater 17:1981–1985

    Article  Google Scholar 

  22. Itskos G, Xristodoulou X, Iliopoulos E, Ladas S, Kennou S, Neophytou M, Choulis S (2013) Electronic and interface properties of polyfluorene films on GaN for hybrid optoelectronic applications. Appl Phys Lett 102:063303 (1–5)

    Article  Google Scholar 

  23. Pogantsch A, Wenzl FP, List EJW, Leising G, Grimsdale AC, Müllen K (2002) Polyfluorenes with dendron side chains as the active materials for polymer light-emitting devices. Adv Mater 14:1061–1064

    Article  Google Scholar 

  24. Watters DC, Yi H, Pearson AJ, Kingsley J, Iraqi A, Lidzey D (2013) Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells. Macromol Rapid Commun 34:1157–1162

    Article  Google Scholar 

  25. Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y (2013) All-solution processed polymer light-emitting diode displays. Nature Commun 4:1971, doi:10.1038/ncomms2971

  26. Osken I, Gundogan AS, Tekin E, Eroglu MS, Ozturk T (2013) Fluorene-Dithienothiophene-S, S-dioxide copolymers. Fine-tuning for OLED applications. Macromolecules 46:9202–9210

    Article  Google Scholar 

  27. Puodziukynaite E, Wang L, Schanze KS, Papanikolas JM, Reynolds JR (2014) Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications. Polym Chem 5:2363–2369

    Article  Google Scholar 

  28. Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci Part A: Polym Chem 39:2867–2873

    Article  Google Scholar 

  29. Zhang T, Wang R, Ren H, Chen Z, Li J (2012) Deep blue light-emitting polymers with fluorinated backbone for enhanced color purity and efficiency. Polymer 53:1529–1534

    Article  Google Scholar 

  30. Montali A, Smith P, Weder C (1998) Poly(p-phenylene ethynylene)-based light-emitting devices. Synth Met 97:123–126

    Article  Google Scholar 

  31. Mishra SP, Palai AK, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2010) Highly air-stable thieno[3,2-b]thiophene–thiophene-thiazolo[5,4-d]thiazole-based polymers for light-emitting diodes. Macromol Chem Phys 211:1890–1899

    Article  Google Scholar 

  32. Poul B, Kap-soo C, Gilles D, Nicolas D, Serge T, David PW, Li W (2011) Photovoltaic cell with benzodithiophene-containing polymer. WO/2011/085004

  33. Mishra SP, Palai AK, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2009) Dithieno[3,2-b:2’,3’-d]pyrrole-alkylthiophene-benzo[c][1, 2, 5]thiadiazole-based highly stable and low band gap polymers for polymer light-emitting diodes. J Polym Sci Part A: Polym Chem 47:6514–6525

    Article  Google Scholar 

  34. Wu Z, Fan B, Li A, Xue F, Ouyang J (2011) Low-band gap copolymers of ethynylfluorene and 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione synthesized under microwave irradiation for polymer photovoltaic cells. Org Electron 12:993–1002

    Article  Google Scholar 

  35. Palai AK, Rath SK, Srivastava R, Kamalasanan MN, Patri M (2009) Substituent effect on the optoelectronic properties of poly(p-phenylenevinylene) based conjugated-nonconjugated copolymers. J Appl Polym Sci 112:2988–2998

    Article  Google Scholar 

  36. Palai AK, Mishra SP, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2010) Synthesis and characterization of alternative donor-acceptor arranged poly(arylene ethynylene)s derived from 1,4-diketo-3,6-diphenylpyrrolo-[3,4-c]pyrrole (DPP). Eur Polym J 46:1940–1951

    Article  Google Scholar 

  37. Zhan X, Liu Y, Yu G, Wu X, Zhu D, Sun R, Wang D, Epstein AJ (2001) Synthesis and electroluminescence of poly(aryleneethynylene)s based on fluorene containing hole-transport units. J Mater Chem 11:1606–1611

    Google Scholar 

  38. Mishra SP, Javier AE, Zhang R, Liu J, Belot JA, Osaka I, McCullough RD (2011) Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors. J Mater Chem 21:1551–1561

    Google Scholar 

  39. Ma X, Azeem EA, Liu X, Cheng Y, Zhu C (2014) Synthesis and tunable chiroptical properties of chiral BODIPY-based D-π-A conjugated polymers. J Mater Chem C 2:1076–1084

    Article  Google Scholar 

Download references

Acknowledegments

The authors thank M. N. Kamalasanan and R. Srivastava from NPL, New Delhi for their help in PLED device fabrication and characterization. The authors would also like to thank Professor Seungmoon Pyo, Konkuk University, Seoul, Republic of Korea and Professor Soonmin Jang, Sejong University, Seoul, Republic of Korea for their help in DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Patri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palai, A.K., Kumar, A., Mishra, S.P. et al. Fluorene-based conjugated poly(arylene ethynylene)s containing heteroaromatic bicycles: preparation and electro-optical properties. J Mater Sci 49, 7408–7417 (2014). https://doi.org/10.1007/s10853-014-8438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8438-2

Keywords

Navigation