Advertisement

Journal of Materials Science

, Volume 49, Issue 21, pp 7408–7417 | Cite as

Fluorene-based conjugated poly(arylene ethynylene)s containing heteroaromatic bicycles: preparation and electro-optical properties

  • Akshaya K. Palai
  • Amit Kumar
  • Sarada P. Mishra
  • M. Patri
Original Paper

Abstract

A series of high molecular weight fluorene-based soluble poly(arylene ethynylene)s (PAEs) have been prepared and characterized. The polymers consist of 2,5-bis(3-tetradecylthiophen-2-yl)-3a,6a-dihydrothieno[3,2-b]thiophene, 2,5-bis(3-tetradecylthiophen-2-yl)-3a,6a-dihydrothiazolo[5,4-d]thiazole, or 4,7-bis(3-tetradecylthiophen-2-yl)benzo[c] [1, 2, 5] thiadiazole unit with an electron donor 9,9-bis(2-ethylhexyl)-9H-fluorene unit connected via electron accepting ethynylene linkage. The molecular weights (M w) of the polymers were found to be in the range of 103600–179000 g/mol with polydispersity index (PDI) of 3.9–5.0. Optical and redox properties have been investigated by UV–visible, fluorescence spectroscopy, and cyclic voltammetry (CV) measurements. Combination of experimental and density functional theory (DFT) calculations indicated that the benzothiadiazole unit incorporated polymer has lowest band gap with most stable lowest unoccupied molecular orbital (LUMO) energy level. Polymer light emitting diode properties have been investigated for the polymer having highest molecular weight with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. Well-behaved diode characteristics with EL maxima at 600 nm were observed.

Graphical Abstract

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Lower Unoccupied Molecular Orbital Energy Benzothiadiazole Lower Unoccupied Molecular Orbital Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledegments

The authors thank M. N. Kamalasanan and R. Srivastava from NPL, New Delhi for their help in PLED device fabrication and characterization. The authors would also like to thank Professor Seungmoon Pyo, Konkuk University, Seoul, Republic of Korea and Professor Soonmin Jang, Sejong University, Seoul, Republic of Korea for their help in DFT calculations.

References

  1. 1.
    Sirringhaus H (2014) 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335CrossRefGoogle Scholar
  2. 2.
    Palai AK, Lee J, Jea M, Hanah Na H, Shin TJ, Jang S, Park S-U, Pyo S (2014) Symmetrically functionalized diketopyrrolopyrrole with alkylated thiophene moiety: from synthesis to electronic devices applications. J Mater Sci 49:4215–4224CrossRefGoogle Scholar
  3. 3.
    Grimsdale AC, Chan K, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091CrossRefGoogle Scholar
  4. 4.
    Palai AK, Kumar A, Shashidhara KK, Mishra SP (2014) Polyalkylthiophene-containing electron donor and acceptor heteroaromatic bicycles: synthesis, photo-physical, and electroluminescent properties. J Mater Sci 49:2456–2464CrossRefGoogle Scholar
  5. 5.
    Liu J, Durstockb M, Dai L (2014) Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ Sci 7:1297–1306CrossRefGoogle Scholar
  6. 6.
    Gao J, Chen W, Dou L, Chen C-C, Chang W-H, Liu Y, Li G, Yang Y (2014) Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells. Adv Mater 26:3142–3147CrossRefGoogle Scholar
  7. 7.
    Balamurugan A, Reddy MLP, Jayakannan M (2013) π-Conjugated polymer-Eu3+ complexes: versatile luminescent molecular probes for temperature sensing. J Mater Chem A 1:2256–2266CrossRefGoogle Scholar
  8. 8.
    Niu Q, Gao K, Lin Z, Wu W (2013) Surface molecular-imprinting engineering of novel cellulose nanofibril/conjugated polymer film sensors towards highly selective recognition and responsiveness of nitroaromatic vapors. Chem Commun 49:9137–9139CrossRefGoogle Scholar
  9. 9.
    Bolduc A, Skene WG (2014) Direct preparation of electroactive polymers on electrodes and their use in electrochromic devices. Polym Chem 5:1119–1123CrossRefGoogle Scholar
  10. 10.
    Osterholm AM, Shen DE, Dyer AL, Reynolds JR (2013) Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices. ACS Appl Mater Interfaces 5(24):13432–13440CrossRefGoogle Scholar
  11. 11.
    Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol Energy Mater Sol Cells 93:422–441CrossRefGoogle Scholar
  12. 12.
    Sandstorm A, Dam HF, Krebs FC, Edman L (2012) Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat Commun 3:1002. doi: 10.1038/ncomms2002
  13. 13.
    Egbe DAM, Neugebauer H, Sariciftci NS (2011) Alkoxy-substituted poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s: synthesis, electroluminescence and photovoltaic applications. J Mater Chem 21:1338–1349Google Scholar
  14. 14.
    Dallos T, Beckmann D, Brunklaus G, Baumgarten M (2011) Thiadiazoloquinoxaline-acetylene containing polymers as semiconductors in ambipolar field effect transistors. J Am Chem Soc 133:13898–13901CrossRefGoogle Scholar
  15. 15.
    Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  16. 16.
    Zheng J, Swager TM (2005) Poly(arylene ethynylene)s in chemosensing and biosensing. Adv Polym Sci 177:151–179CrossRefGoogle Scholar
  17. 17.
    Davey AP, Elliott S, O’Conner O, Blau W (1995) New rigid backbone conjugated organic polymers with large fluorescence quantum yields. J Chem Soc, Chem Commun 14:1433–1434CrossRefGoogle Scholar
  18. 18.
    Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644CrossRefGoogle Scholar
  19. 19.
    Tekin E, Egbe DAM, Kranenburg JM, Ulbricht C, Rathgeber S, Birckner E, Rehmann N, Meerholz K, Schubert US (2008) Effect of side chain length variation on the optical properties of PPE-PPV hybrid polymers. Chem Mater 20:2727–2735CrossRefGoogle Scholar
  20. 20.
    Guo X, Watson MD (2011) Pyromellitic diimide-based donor-acceptor poly(phenylene ethynylene)s. Macromolecules 44:6711–6716CrossRefGoogle Scholar
  21. 21.
    Breen CA, Tischler Y, Bulovic V, Swager TM (2005) Highly efficient blue electroluminescence from poly(phenylene ethynylene) via energy transfer from a hole-transport matrix. Adv Mater 17:1981–1985CrossRefGoogle Scholar
  22. 22.
    Itskos G, Xristodoulou X, Iliopoulos E, Ladas S, Kennou S, Neophytou M, Choulis S (2013) Electronic and interface properties of polyfluorene films on GaN for hybrid optoelectronic applications. Appl Phys Lett 102:063303 (1–5)CrossRefGoogle Scholar
  23. 23.
    Pogantsch A, Wenzl FP, List EJW, Leising G, Grimsdale AC, Müllen K (2002) Polyfluorenes with dendron side chains as the active materials for polymer light-emitting devices. Adv Mater 14:1061–1064CrossRefGoogle Scholar
  24. 24.
    Watters DC, Yi H, Pearson AJ, Kingsley J, Iraqi A, Lidzey D (2013) Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells. Macromol Rapid Commun 34:1157–1162CrossRefGoogle Scholar
  25. 25.
    Zheng H, Zheng Y, Liu N, Ai N, Wang Q, Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y (2013) All-solution processed polymer light-emitting diode displays. Nature Commun 4:1971, doi: 10.1038/ncomms2971
  26. 26.
    Osken I, Gundogan AS, Tekin E, Eroglu MS, Ozturk T (2013) Fluorene-Dithienothiophene-S, S-dioxide copolymers. Fine-tuning for OLED applications. Macromolecules 46:9202–9210CrossRefGoogle Scholar
  27. 27.
    Puodziukynaite E, Wang L, Schanze KS, Papanikolas JM, Reynolds JR (2014) Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications. Polym Chem 5:2363–2369CrossRefGoogle Scholar
  28. 28.
    Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci Part A: Polym Chem 39:2867–2873CrossRefGoogle Scholar
  29. 29.
    Zhang T, Wang R, Ren H, Chen Z, Li J (2012) Deep blue light-emitting polymers with fluorinated backbone for enhanced color purity and efficiency. Polymer 53:1529–1534CrossRefGoogle Scholar
  30. 30.
    Montali A, Smith P, Weder C (1998) Poly(p-phenylene ethynylene)-based light-emitting devices. Synth Met 97:123–126CrossRefGoogle Scholar
  31. 31.
    Mishra SP, Palai AK, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2010) Highly air-stable thieno[3,2-b]thiophene–thiophene-thiazolo[5,4-d]thiazole-based polymers for light-emitting diodes. Macromol Chem Phys 211:1890–1899CrossRefGoogle Scholar
  32. 32.
    Poul B, Kap-soo C, Gilles D, Nicolas D, Serge T, David PW, Li W (2011) Photovoltaic cell with benzodithiophene-containing polymer. WO/2011/085004Google Scholar
  33. 33.
    Mishra SP, Palai AK, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2009) Dithieno[3,2-b:2’,3’-d]pyrrole-alkylthiophene-benzo[c][1, 2, 5]thiadiazole-based highly stable and low band gap polymers for polymer light-emitting diodes. J Polym Sci Part A: Polym Chem 47:6514–6525CrossRefGoogle Scholar
  34. 34.
    Wu Z, Fan B, Li A, Xue F, Ouyang J (2011) Low-band gap copolymers of ethynylfluorene and 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione synthesized under microwave irradiation for polymer photovoltaic cells. Org Electron 12:993–1002CrossRefGoogle Scholar
  35. 35.
    Palai AK, Rath SK, Srivastava R, Kamalasanan MN, Patri M (2009) Substituent effect on the optoelectronic properties of poly(p-phenylenevinylene) based conjugated-nonconjugated copolymers. J Appl Polym Sci 112:2988–2998CrossRefGoogle Scholar
  36. 36.
    Palai AK, Mishra SP, Kumar A, Srivastava R, Kamalasanan MN, Patri M (2010) Synthesis and characterization of alternative donor-acceptor arranged poly(arylene ethynylene)s derived from 1,4-diketo-3,6-diphenylpyrrolo-[3,4-c]pyrrole (DPP). Eur Polym J 46:1940–1951CrossRefGoogle Scholar
  37. 37.
    Zhan X, Liu Y, Yu G, Wu X, Zhu D, Sun R, Wang D, Epstein AJ (2001) Synthesis and electroluminescence of poly(aryleneethynylene)s based on fluorene containing hole-transport units. J Mater Chem 11:1606–1611Google Scholar
  38. 38.
    Mishra SP, Javier AE, Zhang R, Liu J, Belot JA, Osaka I, McCullough RD (2011) Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors. J Mater Chem 21:1551–1561Google Scholar
  39. 39.
    Ma X, Azeem EA, Liu X, Cheng Y, Zhu C (2014) Synthesis and tunable chiroptical properties of chiral BODIPY-based D-π-A conjugated polymers. J Mater Chem C 2:1076–1084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Akshaya K. Palai
    • 1
    • 3
  • Amit Kumar
    • 2
    • 3
  • Sarada P. Mishra
    • 1
  • M. Patri
    • 1
  1. 1.Polymer Science and Technology CenterNaval Materials Research LaboratoryAmbernathIndia
  2. 2.Center for Organic ElectronicsNational Physical Laboratory (CSIR)New DelhiIndia
  3. 3.Department of ChemistryKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations