Skip to main content
Log in

Assigning physical significance to the diffuse interface between terraces in phase-field modeling of steps on crystal surfaces: modeling step–step interaction

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We apply a modified phase-field modeling approach to the analysis of steps on a crystalline surface. Specifically, we are interested in capturing phenomena associated with the interaction between steps. To this end, we assign a physical significance to the form of the interfacial region between terraces (i.e. steps), inherent in the phase field approach, by tuning the multi-well potential to produce long-range interaction energies varying as 1/l2, where l is half the distance between steps. Resultant repulsive interactions between adjacent steps of the same sign are shown to affect step-flow kinetics in a manner consistent with curvature-driven interfacial relaxation. This phenomenon is further demonstrated to cause dislocation-driven (spiral) crystal growth kinetics to deviate, for large supersaturation and Burgers vector values, from the classical quadratic growth law. Attractive interactions between adjacent steps of opposite sign, also resulting from the finite interfacial width, are briefly explored particularly with respect to their possible impact on two-dimensional nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The product of the step kinetic coefficient (β) and the supersaturation (σ) is, for straight and non-interacting steps, the step velocity.

  2. Since α > 2 both qr and qa are well defined positive numbers.

References

  1. Jayaprakash C, Rottman C, Saam WF (1984) Phys Rev B 30:6549

    Article  CAS  Google Scholar 

  2. Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Müller P, Saúl A (2004) Surf Sci Rep 54:157

    Article  Google Scholar 

  4. Israeli N, Kandel D (2000) Phys Rev B 62(20):13707

    Article  CAS  Google Scholar 

  5. Selke W, Duxbury PM (1995) Phys Rev B 52(24):17468

    Article  CAS  Google Scholar 

  6. Burton WK, Cabrera N, Frank FC (1951) Philos Trans R Soc A 243:299

    Article  Google Scholar 

  7. Fu ES, Johnson MD, Liu D-J, Weeks JD, Williams ED (1996) Phys Rev Lett 77(6):1091

    Article  CAS  Google Scholar 

  8. Dai B (2005) PhD thesis, The Graduate School of the University of Minnesota

  9. Karma A (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, Dordrecht

    Google Scholar 

  10. Emmerich H (2008) Adv Phys 57(1):1

    Article  CAS  Google Scholar 

  11. Kim SG, Kim WT (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, Dordrecht

    Google Scholar 

  12. Tang J, Xue X (2009) J Mater Sci 44:745. doi:https://doi.org/10.1007/s10853-008-3157-1

    Article  CAS  Google Scholar 

  13. Krill KE III (2005) In: Yip S (ed) Handbook of materials modeling. Part B. Springer, Dordrecht

    Google Scholar 

  14. McKenna IM, Gururajan MP, Voorhees PW (2009) J Mater Sci 44:2206. doi:https://doi.org/10.1007/s10853-008-3196-7

    Article  CAS  Google Scholar 

  15. Liu F, Metiu H (1994) Phys Rev E 49(4):2601

  16. Karma A, Plapp M (1998) Phys Rev Lett 81(20):4444

    Article  CAS  Google Scholar 

  17. Emmerich H (2003) Continuum Mech Thermodyn 15(2):197

    Article  Google Scholar 

  18. Pierre-Louis O (2003) Phys Rev E 68(2):021604

    Article  CAS  Google Scholar 

  19. Rätz A, Voigt A (2004) J Cryst Growth 266:278

    Article  Google Scholar 

  20. Yeon D-H, Cha P-R, Chung S-I, Yoon J-K (2004) Met Mater Int 9(1):67

    Article  Google Scholar 

  21. Redinger A, Ricken O, Kuhn P, Rätz A, Voigt A, Krug J, Michely T (2009) Phys Rev Lett 100:035506

    Article  Google Scholar 

  22. Yu Y-M, Liu B-G, Voigt A (2009) Phys Rev B 79(23):235317

    Article  Google Scholar 

  23. Graham R, Knuth D, Patashnik O (1994) Concrete mathematics: a foundation for computer science, 2 edn. Addison-Wesley, Reading

    Google Scholar 

  24. van der Erden JP (1993) In: Hurle DTJ (ed) Handbook of crystal growth, vol 1a: bulk fundamentals, growth thermodynamics and kinetics. North-Holland, Amsterdam

    Google Scholar 

  25. Provatas N, Greenwood M, Athreya B, Goldenfeld N, Dantzig J (2005) Int J Mod Phys B 19(31):4525

    Article  CAS  Google Scholar 

  26. Wang S-L, Sekerka RF, Wheeler AA, Murray BT, Coriell SR, Brown RJ, McFadden GB (1993) Physica D 69:189

    Article  CAS  Google Scholar 

  27. Karma A, Rappel W-J (1998) Phys Rev E 57(4):4323

    Article  CAS  Google Scholar 

  28. Bennema P, Kern R, Simon B (1967) Phys Status Solidi 19(1):211

    Article  CAS  Google Scholar 

  29. Kwon Y-I, Dai B, Derby JJ (2007) Prog Cryst Growth Charact Mater 53:167

    Article  CAS  Google Scholar 

  30. Moseler M, Landman U (2000) Science 289(5482):1165

    Article  CAS  Google Scholar 

  31. Kang W, Landman U (2007) Phys Rev Lett 98(6):064504/1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Virozub for his mathematical insight related to this article. This research was supported by THE ISRAEL SCIENCE FOUNDATION (Grant No. 1190/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brandon.

Appendices

Appendix 1: derivation of step–step interaction parameters

In this appendix we provide details of the analytical treatment leading to the derivation of Eqs. 1723. We first start with the derivation of the case of repulsing steps in a step train, consistent with Fig. 1a and described by the stationary 1-D solution of Eq. 7 in the spatial interval [−l, l] with boundary conditions given by Eq. 14. Our goal is to demonstrate how our choice of g(ϕ), given by Eq. 13, leads to the desired power law dependence of step–step interaction energy on the distance between steps. Moreover, we wish to find the relation between the parameters of the interaction law and those appearing in Eqs. 7 (τ, ξ, W, λ) and 13 (α).

The stationary 1-D version of Eq. 7, with the assumption of relatively low supersaturation values (λσ ≪ W and λσ ≪ ξ2) is given by:

$$ \xi^2\frac{{\hbox{d}}^2\phi}{{\hbox{d}}x^2} - Wg^{\prime}(\phi)=0.$$
(30)

This equation can be re-written and integrated according to:

$$ \xi^2\int\frac{{\hbox{d}}\phi}{{\hbox{d}}x}d\left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)= W\int {\hbox{d}}g(\phi),$$
(31)

which, while remembering that g(ϕ(l)) = 0, yields:

$$ \frac{\xi^2}{2}\left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)^2 = Wg(\phi)+\frac{\xi^2}{2}G_r,$$
(32)

where \(G_r\equiv\left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}|_{x=l}\right)^2.\)

Taking the square root of both sides of Eq. 32, while remembering that in this case \(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}<0,\) rearranging the results and integrating between x = 0 (ϕ = 1/2) and x = l (ϕ = 0) yields:

$$ \begin{aligned} l =\,& \xi \int\limits_{0}^{1/2} \frac{{\hbox{d}}\phi}{\sqrt{2Wg(\phi)+\xi^2G_r}}\\ =\,& \xi \int\limits_{0}^{\infty} \frac{{\hbox{d}}\phi}{\sqrt{2W{\tilde{g}}(\phi)+\xi^2G_r}}- \xi \int\limits_{1/2}^{\infty} \frac{{\hbox{d}}\phi}{\sqrt{2W{\tilde{g}}(\phi)+\xi^2G_r}},\end{aligned}$$
(33)

where \({\tilde{g}}(\phi)\equiv \phi^{\alpha}.\) Assuming a relatively large distance between steps (\(G_r \ll 2W/(2^{\alpha}\xi^2)\)) we now obtain:

$$ \begin{aligned} l =\,&\xi \int\limits_{0}^{\infty} \frac{{\hbox{d}}\phi}{\sqrt{2W\phi^{\alpha}+\xi^2G_r}}- \xi \int\limits_{1/2}^{\infty}\frac{{\hbox{d}}\phi}{\sqrt{2W\phi^{\alpha}}}\\ =\,&\frac{q_r}{\sqrt{G_r}}\left(\frac{\xi^2G_r}{2W} \right)^{1/\alpha}-\frac{2^{\frac{\alpha-1}{2}}}{\alpha-2}\frac{\xi}{\sqrt{W}},\end{aligned} $$
(34)

where qr is defined in Eq. 20.

The step energy is now calculated using the equation:

$$ \gamma_{\rm st} = \int\limits_{-l}^l \left[\frac{\xi^2}{2} \left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)^2 + W g(\phi)\right] {\hbox{d}}x.$$
(35)

This equation is next re-written, with the help of Eq. 32 while remembering that \(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}<0,\) to yield:

$$ \begin{aligned} \gamma_{\rm st} =& \int\limits_{-l}^l \left[\xi^2 \left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)^2 - \frac{\xi^2}{2}G_r\right] {\hbox{d}}x\\ =& \xi\int\limits_{l}^{-l} \sqrt{2Wg(\phi)+\xi^2G_r}\frac{{\hbox{d}}\phi}{{\hbox{d}}x}{\hbox{d}}x - \xi^2 G_r l\\ =& \xi\int\limits_{0}^1\sqrt{2Wg(\phi)+\xi^2G_r}{\hbox{d}}\phi - \xi^2 G_r l.\end{aligned}$$
(36)

We next compare the first term of this result with Eq. 33, while accounting for symmetry with respect to ϕ = 0.5 and remembering our assumption of a relatively large distance between steps. It can be seen this term is proportional to the integral of Eq. 33 with respect to Gr. With this information, together with Eq. 34, we can see that:

$$ \begin{aligned} \gamma_{\rm st} =& 2\xi\int\limits_{0}^{1/2} \sqrt{2Wg(\phi)+\xi^2G_r}{\hbox{d}}\phi - \xi^2 G_r l\\=& \xi^2\int\limits_{0}^{G_r} l(G^*_r){\text{d}}G^*_r - \xi^2 G_r l+\gamma_{{\rm st}_0}\\ =& \xi^2\int\limits_{0}^{G_r} \frac{q_r}{\sqrt{G^*_r}}\left(\frac{\xi^2G^*_r}{2W} \right)^{1/\alpha}{\hbox{d}}G^*_r- \frac{2^{\frac{\alpha-1}{2}}}{\alpha-2}\frac{\xi^3} {\sqrt{W}}G_r\\ &- \xi^2 G_r l+\gamma_{{\rm st}_0},\end{aligned} $$
(37)

where \( \gamma_{{\rm st}_0}\) is the constant of integration (with respect to Gr) which corresponds to the value of the step energy in the limit of l→∞ (Gr→0) in which case step–step interactions disappear. Equation 37 is further simplified (with the aid of Eq. 34 to yield:

$$ \begin{aligned} \gamma_{\rm st}=& \frac{2\alpha}{2+\alpha}\xi^2G_r\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)-\frac{2^{\frac{\alpha-1} {2}}} {\alpha-2}\frac{\xi^3}{\sqrt{W}}G_r\\ &- \xi^2 G_r l+\gamma_{{\rm st}_0}.\end{aligned} $$
(38)

Remembering (see Eq. 16) that \( \gamma_{\rm int} = \gamma_{\rm st} - \gamma_{{\rm st}_0}\) and inserting the dependence of Gr on l (extracted from Eq. 34) into Eq. 38 yields the following expression for the step–step interaction energy:

$$ \begin{aligned} \gamma_{\rm int} =& \left(\frac{\alpha-2} {\alpha+2}\right)\xi^2\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)G_r\\ =& \left(\frac{\alpha-2}{\alpha+2}\right)\left[\frac{2W}{(\xi q_r)^{\alpha}}\right]^{\frac{2}{2-\alpha}}\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)^{\frac{2+\alpha}{2-\alpha}}\\ =& b_r\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)^{\frac{2+\alpha}{2-\alpha}},\end{aligned} $$
(39)

where br is given by Eq. 18. Remembering the above assumption of relatively large distance between steps \((G_r \ll 2W/(2^{\alpha}\xi^2)),\) we can see that for \(l\gg\frac{2^{\frac{\alpha-1}{2}}}{\alpha-2}\frac{\xi} {\sqrt{W}}\) we obtain, from Eq. 39, the power law given by Eq. 17.

We next return to Eq. 33 and consider now the case of short distances between steps \((G_r \gg 2W/(2^{\alpha}\xi^2)).\) With this assumption it is easy to show that

$$ l=(4G_r)^{-1/2},$$
(40)

and following Eq. 36 one can show (with the above short step–step distance assumption) that:

$$ \gamma_{\rm st} = \xi^2\left(\sqrt{G_r}-G_rl\right),$$
(41)

and, after inserting Gr(l) from Eq. 40 into Eq. 41 we obtain:

$$ \gamma_{\rm st} = \xi^2\left[1/(2l)-l/(4l^2)\right]=0.25\xi^2/l.$$
(42)

Now \(G_r \gg 2W/(2^{\alpha}\xi^2) \geq 2Wg(\phi)/\xi^2\) (for all values of ϕ), and as a result \(\xi^2\sqrt{G_r} \gg \xi\sqrt{2Wg(\phi)}\) (for all values of ϕ). Therefore, \(\int_0^{1/2}\xi^2\sqrt{G_r}{\hbox{d}}\phi\gg\int_0^{1/2}\xi\sqrt{2Wg(\phi)}{\hbox{d}}\phi\) and, due to symmetry with respect to ϕ = 0.5, \(\xi^2\sqrt{G_r}\gg\left(\sqrt{2}\int_0^{1}\sqrt{g(\phi)}{\hbox{d}}\phi\right)\xi\sqrt{W}.\) Comparing with Eqs. 10 and 11, we see that we have obtained \(\xi^2\sqrt{G_r}\gg\gamma_{{\rm st}_0}.\) Using Gr(l) from Eq. 40 we further understand that ξ2/(2l) ≫ \( \gamma_{{\rm st}_0}\) and, with the aid of Eq. 42, it is reasonable to conclude that γst\( \gamma_{{\rm st}_0}\) which means that the step energy is dominated by step–step interactions and Eq. 42 is equivalent to Eq. 23.

Finally, we address the case of attracting steps, consistent with Fig. 1b and described by the stationary 1-D solution of Eq. 7 in the spatial interval [ − l,l] with boundary conditions given by Eq. 15. Our starting point is Eq. 30 which, when remembering \(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}|_{x=l}=0\) yields:

$$ \frac{\xi^2}{2}\left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)^2 = Wg(\phi)-WG_a,$$
(43)

where Gag(ϕ(x))|x=l. Following the same approach used in the derivation of Eqs. 33 and 34 we next isolate l under the assumption that \(G_a\ll\frac{1}{2^{\alpha}}\) while understanding that \(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}<0,\) x = 0 corresponds to ϕ = 1/2 and x = l corresponds to ϕ(l) = G 1/α a . The result is given by:

$$ \begin{aligned} l =&\xi \int\limits_{G_a^{1/\alpha}}^{1/2} \frac{{\hbox{d}}\phi}{\sqrt{2W(\phi^{\alpha}-G_a)}}\\ =& \xi\int\limits_{G_a^{1/\alpha}}^{\infty} \frac{{\hbox{d}}\phi}{\sqrt{2W(\phi^{\alpha}-G_a)}}- \xi \int\limits_{1/2}^{\infty}\frac{{\hbox{d}}\phi}{\sqrt{2W\phi^{\alpha}}}\\ =&\frac{\xi q_a}{\sqrt{2W}}G_a^{\frac{2-\alpha}{2\alpha}}- \frac{2^{\frac{\alpha-1} {2}}} {\alpha-2}\frac{\xi}{\sqrt{W}},\\ \end{aligned} $$
(44)

where qa is defined in Eq. 21.

We next start with the definition of the step energy given by Eq. 35 and following the same logic as in the case of step–step repulsion, with the aid of Eq. 43, we can show that:

$$ \begin{aligned} \gamma_{\rm st} =& \int\limits_{-l}^l \left[\xi^2 \left(\frac{{\hbox{d}}\phi}{{\hbox{d}}x}\right)^2 + WG_a\right] {\hbox{d}}x\\ =& \xi\int\limits_{l}^{-l} \sqrt{2W \left[g(\phi)-G_a \right]}\frac{{\hbox{d}}\phi}{{\hbox{d}}x}{\hbox{d}}x + 2WG_al\\ =& 2\xi\int\limits_{G_a^{1/\alpha}}^{1/2} \sqrt{2W\left[g(\phi)-G_a\right]}{{\hbox{d}}\phi}+ 2WG_al,\end{aligned} $$
(45)

which is further simplified to become:

$$ \begin{aligned} \gamma_{\rm st} =& -2W\int\limits_{0}^{G_a} l(G^*_a){\hbox{d}}G^*_a +2W G_a l+\gamma_{{\rm st}_0}\\ =& -2W\int\limits_{0}^{G_a} \frac{\xi q_a}{\sqrt{2W}}{G^*_a}^{\frac{2-\alpha} {2\alpha}}{\hbox{d}}G^*_a+ \frac{2^{\frac{\alpha+1} {2}}}{\alpha-2}{\xi}{\sqrt{W}}G_a\\ &+ 2WG_al+\gamma_{{\rm st}_0}\\ =&-\frac{2\alpha}{2+\alpha}\xi q_a\sqrt{2W}G_a^{\frac{2+\alpha} {2\alpha}}+ \frac{2^{\frac{\alpha+1}{2}}}{\alpha-2}{\xi}{\sqrt{W}}G_a \\ &+ 2WG_al+\gamma_{{\rm st}_0}.\end{aligned} $$
(46)

Inserting Ga(l) from Eq. 44 and recalling Eq. 16, we obtain the interaction energy:

$$ \begin{aligned} \gamma_{\rm int} =& \left(\frac{2-\alpha}{\alpha+2}\right)\left[\frac{2W}{(\xi q_a)^{\alpha}}\right]^{\frac{2}{2-\alpha}}\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)^{\frac{2+\alpha}{2-\alpha}}\\ =& b_a\left(l+\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}}\right)^{\frac{2+\alpha}{2-\alpha}},\end{aligned}$$
(47)

where ba is given by Eq. 19. Here, as in the case of repulsion, the assumption of large step–step distances \((G_a\ll\frac{1}{2^{\alpha}}, l\gg\frac{2^{\frac{\alpha-1}{2}}} {\alpha-2}\frac{\xi}{\sqrt{W}})\) renders Eq. 47 equivalent to the power law given by Eq. 17.

Appendix 2: testing alternative forms of g(ϕ) and p(ϕ)

In the text we discuss the replacement of Eq. 13, for ψc < ψ(ϕ) < 1 − ψc, by a simple constant valued interpolating function yielding g(ϕ) given by Eq. 26. In addition to varying the value of ψc (mentioned in the text), we tested the sensitivity of the model to this interpolating function using a more general alternative to Eq. 26 given by:

$$ g(\phi)=\left\{\begin{array}{llllll} \psi(\phi)^{6}, &\qquad \psi(\phi) \le \psi_c \\ \Sigma_{i=0}^{m}c_i\psi(\phi)^i\left[1-\psi(\phi)\right]^i, & \psi_c < \psi(\phi) < 1-\psi_c \\ \left[1-\psi(\phi)\right]^{6},&\,\qquad\psi(\phi) \ge 1-\psi_c\end{array}\right.,$$
(48)

with ci determined by enforcing continuity in g(ϕ) and its derivatives (up to order m) at ψc and 1 − ψc. For a given level of supersaturation, and physical parameter values, results with m = 0 (in which case Eq. 48 is equivalent to Eq. 26) were found to be virtually the same as those achieved with m = 3.

Results presented in Figs. 3 and 4 were reproduced using three alternative forms for p(ϕ), all of which are monotonically increasing functions which return the value of the phase-field parameter on terraces (p(n) = n) and guarantee the existence of stable minima in f(ϕ) (given by Eqs. 4 and 13) at integer values of ϕ for any value of σ. In the first case, Eq. 24 (with α = 6) was modified using a linear interpolation in the region ψc < ψ(ϕ) < 1 − ψc, yielding:

$$ p(\phi)=\left\{ \begin{array}{llllll}0.5\left[\frac{\psi(\phi)} {0.5}\right]^{7}+n(\phi), &\qquad \psi(\phi) \le \psi_c\\ 0.5\left(\frac{\psi_c} {0.5}\right)^{7}+\,n(\phi)+\,\frac{\left[\psi(\phi)-\psi_c\right]} {2\left(1-2\psi_c\right)}& \\ \times \left[2-\left(\frac{1-\psi_c} {0.5}\right)^{7}-\,\left(\frac{\psi_c} {0.5}\right)^{7}\right], & \psi_c <\psi(\phi) < 1-\psi_c\\ 1-0.5\left[\frac{1-\psi(\phi)} {0.5}\right]^{7}+\,n(\phi),&\,\qquad \psi(\phi) \ge 1-\psi_c \end{array}\\ \right..$$
(49)

The second case, given by:

$$ p(\phi)=\left\{\begin{array}{llllll} 0.25\left[\frac{\psi(\phi)} {0.5}\right]^{7}+\,n(\phi), &\qquad \psi(\phi) \le \psi_c \\ 0.25\left(\frac{\psi_c}{0.5}\right)^{7}+n(\phi)+\, \frac{\left[\psi(\phi)-\psi_c\right]} {4\left(1-2\psi_c\right)}&\\ \times \left[4-\left(\frac{1-\psi_c}{0.5}\right)^{7}-\,\left(\frac{\psi_c}{0.5}\right)^{7}\right], & \psi_c <\psi(\phi) < 1-\psi_c\\ 1-0.25\left[\frac{1-\psi(\phi)}{0.5}\right]^{7}+\,n(\phi),&\,\qquad \psi(\phi) \ge 1-\psi_c \end{array}\right., $$
(50)

is similar in form to Eq. 49 except for the fact that the power law terms are pre-multiplied by a factor of 0.25 rather than by a factor of 0.5. Note that in Eq. 24 the factor of 0.5 is necessary for continuity at ϕ = 0.5 (where p(0.5) = 0.5). Notice also that the specific forms of the linear part of p(ϕ) in Eqs. 49 and 50 (in the region ψc < ψ(ϕ)  < 1 − ψc) guarantees continuity of this function for all values of ϕ (where here too p(0.5) = 0.5).

The last alternative form of p(ϕ) is given by

$$ p(\phi)=\left\{\begin{array}{ll}0.5\left[\frac{\psi(\phi)} {0.5}\right]^{8}+\,n(\phi), & \psi(\phi)<1/2\\ 1-0.5\left[\frac{1-\psi(\phi)}{0.5}\right]^{8}+\,n(\phi),& \psi(\phi) \ge 1/2 \end{array}\\ \right.,$$
(51)

where in this case the exponent of the power law was increased. Repeating calculations for the cases involving a non-zero value of supersaturation (presented in Figs. 3 and 4), using all three alternative forms of p(ϕ) (Eqs. 4951 with ψc = 0.35), yielded results virtually the same as those obtained using Eq. 24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasin, I.G., Brandon, S. Assigning physical significance to the diffuse interface between terraces in phase-field modeling of steps on crystal surfaces: modeling step–step interaction. J Mater Sci 44, 5980–5989 (2009). https://doi.org/10.1007/s10853-009-3825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3825-9

Keywords

Navigation