Skip to main content
Log in

Sparse Approximation of 3D Meshes Using the Spectral Geometry of the Hamiltonian Operator

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The discrete Laplace operator is ubiquitous in spectral shape analysis, since its eigenfunctions are provably optimal in representing smooth functions defined on the surface of the shape. Indeed, subspaces defined by its eigenfunctions have been utilized for shape compression, treating the coordinates as smooth functions defined on the given surface. However, surfaces of shapes in nature often contain geometric structures for which the general smoothness assumption may fail to hold. At the other end, some explicit mesh compression algorithms utilize the order by which vertices that represent the surface are traversed, a property which has been ignored in spectral approaches. Here, we incorporate the order of vertices into an operator that defines a novel spectral domain. We propose a method for representing 3D meshes using the spectral geometry of the Hamiltonian operator, integrated within a sparse approximation framework. We adapt the concept of a potential function from quantum physics and incorporate vertex ordering information into the potential, yielding a novel data-dependent operator. The potential function modifies the spectral geometry of the Laplacian to focus on regions with finer details of the given surface. By sparsely encoding the geometry of the shape using the proposed data-dependent basis, we improve compression performance compared to previous results that use the standard Laplacian basis and spectral graph wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aflalo, Y., Brezis, H., Kimmel, R.: On the optimality of shape and data representation in the spectral domain. SIAM J. Imaging Sci. 8(2), 1140–1160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alliez, P., Gotsman, C.: Recent Advances in Compression of 3D Meshes. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  3. Andreux, M., Rodola, E., Aubry, M., Cremers, D.: Anisotropic Laplace–Beltrami operators for shape analysis. In: NORDIA’14-Sixth Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (2014)

  4. Ben-Chen, M., Gotsman, C.: On the optimality of spectral compression of mesh data. ACM Trans. Graph. (TOG) 24(1), 60–80 (2005). https://doi.org/10.1145/1037957.1037961

    Article  Google Scholar 

  5. Bronstein, A., Choukroun, Y., Kimmel, R., Sela, M.: Consistent discretization and minimization of the l1 norm on manifolds. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE (2016)

  6. Choukroun, Y., Pai, G., Kimmel, R.: Schrödinger Operator for Sparse Approximation of 3D Meshes. In: Brentzen J.A., Hildebrandt K. (eds.) Symposium on Geometry Processing 2017-Posters. The Eurographics Association (2017)

  7. Choukroun, Y., Shtern, A., Bronstein, A., Kimmel, R.: Hamiltonian operator for spectral shape analysis. arXiv:1611.01990 (2016)

  8. Chung, F.R.K.: Spectral graph theory : [CBMS conference on recent advances in spectral graph theory held at California State University at Fresno, June 6–10, 1994],. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1997)

  9. Guskov, I., Vidimče, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York (2000)

  10. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30, 129–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hildebrandt, K., Schulz, C., von Tycowicz, C., Polthier, K.: Modal shape analysis beyond Laplacian. Comput. Aided Geom. Des. 29, 204–218 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM (1996)

  13. Iglesias, J.A., Kimmel, R.: Schrödinger Diffusion for Shape Analysis with Texture. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) Computer Vision – ECCV 2012. Workshops and Demonstrations: Florence, Italy, October 7–13, 2012, Proceedings, Part I. Springer, Berlin, Heidelberg (2012)

  14. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co.,New York (2000)

  15. Karni, Z., Gotsman, C.: 3d mesh compression using fixed spectral bases. In: Proceedings of Graphics Interface 2001. Canadian Information Processing Society, Mississauga (2001)

  16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York (2000)

  18. Kovnatsky, A., Raviv, D., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Geometric and photometric data fusion in non-rigid shape analysis. Numer. Math. Theory Methods Appl. 6, 199–222 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Krivokuca, M., Abdulla, W.H., Wunsche, B.C.: Sparse approximations of 3d mesh geometry using frames as overcomplete dictionaries. In: 2013 IEEE International Conference on Computer Vision Workshops (2013)

  20. Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that "understands" geometry. In: 2006 International Conference on Shape Modeling and Applications (SMI (2006)

  21. Maglo, A., Lavoué, G., Dupont, F., Hudelot, C.: 3d mesh compression: survey, comparisons, and emerging trends. ACM Comput. Surv. (CSUR) 47, 44 (2015)

    Article  Google Scholar 

  22. Mahadevan, S.: Adaptive mesh compression in 3d computer graphics using multiscale manifold learning. In: Proceedings of the 24th International Conference on Machine Learning. ACM (2007)

  23. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  24. Mohar, B., Alavi, Y., Chartrand, G., Oellermann, O.R.: The Laplacian spectrum of graphs. Graph Theory Comb. Appl. 2, 12 (1991)

    Google Scholar 

  25. Neumann, T., Varanasi, K., Theobalt, C., Magnor, M., Wacker, M.: Compressed manifold modes for mesh processing. In: Computer Graphics Forum. Wiley Online Library (2014)

  26. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993. IEEE (1993)

  27. Peng, J., Kim, C.S., Kuo, C.C.J.: Technologies for 3d mesh compression: a survey. J. Vis. Commun. Image Represent. 16, 688–733 (2005)

    Article  Google Scholar 

  28. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: From optimised inpainting with linear pdes towards competitive image compression codecs. In: Pacific-Rim Symposium on Image and Video Technology. Springer, Berlin (2015)

  29. Peyré, G., Mallat, S.: Surface compression with geometric bandelets. ACM Trans. Graph. (TOG) 74, 601–608 (2005)

    Article  Google Scholar 

  30. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sorkine, O., Cohen-Or, D., Irony, D., Toledo, S.: Geometry-aware bases for shape approximation. IEEE Trans. Vis. Comput. Graph. 11, 171–180 (2005)

    Article  Google Scholar 

  32. Tosic, I., Frossard, P., Vandergheynst, P.: Progressive coding of 3-d objects based on overcomplete decompositions. IEEE Trans. Circuits Syst. Video Technol. 16, 1338–1349 (2006)

    Article  Google Scholar 

  33. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 86, 572–588 (2006)

    Article  MATH  Google Scholar 

  34. Valette, S., Chaine, R., Prost, R.: Progressive lossless mesh compression via incremental parametric refinement. Comput. Graph. Forum 28, 1301–1310 (2009)

    Article  Google Scholar 

  35. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: wavemesh. IEEE Trans. Vis. Comput. Graph. 10, 123–129 (2004)

    Article  Google Scholar 

  36. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27, 251–260 (2008)

    Article  Google Scholar 

  37. Wallace, G.K.: The JPEG still picture compression standard. ACM Commun. 38, 45 (1991)

    Google Scholar 

  38. Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner Stuttgart, Stuttgart (1998)

    MATH  Google Scholar 

  39. Zhong, M., Qin, H.: Sparse approximation of 3d shapes via spectral graph wavelets. Vis. Comput. 30, 751–761 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoni Choukroun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choukroun, Y., Pai, G. & Kimmel, R. Sparse Approximation of 3D Meshes Using the Spectral Geometry of the Hamiltonian Operator. J Math Imaging Vis 60, 941–952 (2018). https://doi.org/10.1007/s10851-018-0822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0822-0

Keywords

Navigation