Skip to main content
Log in

Morphological Counterparts of Linear Shift-Invariant Scale-Spaces

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

It is well-known that there are striking analogies between linear shift-invariant systems and morphological systems for image analysis. So far, however, the relations between both system theories are mainly understood on a pure convolution / erosion level. A formal connection on the level of differential or pseudodifferential equations and their induced scale-spaces is still missing. The goal of our paper is to close this gap. We present a simple and fairly general dictionary that allows to translate any linear shift-invariant evolution equation into its morphological counterpart and vice versa. It is based on a scale-space representation by means of the symbol of its (pseudo)differential operator. Introducing a novel transformation, the Cramér–Fourier transform, puts us in a position to relate the symbol to the structuring function of a morphological scale-space of Hamilton–Jacobi type. As an application of our general theory, we derive the morphological counterparts of many linear shift-invariant scale-spaces, such as the Poisson scale-space, \(\alpha \)-scale-spaces, summed \(\alpha \)-scale-spaces, relativistic scale-spaces, and their anisotropic variants. Our findings are illustrated by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1974)

    MATH  Google Scholar 

  2. Akian, M., Quadrat, J., Viot, M.: Bellman processes. ICAOS ’94: Discrete Event Systems. Lecture Notes in Control and Information Sciences, vol. 199, pp. 302–311. Springer, London (1994)

  3. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer Science, vol. 6474, pp. 426–437. Springer, Berlin (2010)

    Chapter  Google Scholar 

  6. Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: the Hamilton-Jacobi connection. In: Proceedings of Fourth International Conference on Computer Vision, pp. 215–219. IEEE Computer Society Press, Berlin (1993)

  7. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)

    MATH  Google Scholar 

  8. Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Martí, J., Benedí, J.M., Mendonça, A., Serrat, J. (eds.) Pattern Recognition and Image Analysis. Lecture Notes in Computer Science, vol. 4478, pp. 515–522. Springer, Berlin (2007)

    Chapter  Google Scholar 

  9. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 125–128. San Francisco, CA (1992)

  10. Burgeth, B., Didas, S., Weickert, J.: The Bessel scale-space. In: Olsen, O., Florack, L., Kuijper, A. (eds.) Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, vol. 3753, pp. 84–95. Springer, Berlin (2005)

    Chapter  Google Scholar 

  11. Burgeth, B., Didas, S., Weickert, J.: Relativistic scale-spaces. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 1–12. Springer, Berlin (2005)

    Chapter  Google Scholar 

  12. Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological system theory. Int. J. Comput. Vis. 64(2/3), 157–169 (2005)

    Article  Google Scholar 

  13. Demetz, O., Weickert, J., Bruhn, A., Zimmer, H.: Optic flow scale-space. In: Bruckstein, A.M., ter Haar Romeny, B., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 713–724. Springer, Berlin (2012)

  14. Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 13–25. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Diop, E.H., Angulo, J.: Multiscale image analysis based on robust and adaptive morphological scale-spaces. Image Anal. Stereol. 34(1), 39–50 (2014)

    MathSciNet  Google Scholar 

  16. Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope transform. Signal Process. 38, 79–98 (1994)

    Article  Google Scholar 

  17. Duits, R., Burgeth, B.: Scale spaces on Lie groups. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 300–312. Springer, Berlin (2007)

    Chapter  Google Scholar 

  18. Duits, R., DelaHaije, T., Creusen, E., Ghosh, A.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. J. Math. Imaging Vis. 46(3), 326–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20, 267–298 (2004)

  20. Felsberg, M., Sommer, G.: Scale-adaptive filtering derived from the Laplace equation. In: Radig, B., Florczyk, S. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2032, pp. 95–106. Springer, Berlin (2001)

    Google Scholar 

  21. Florack, L.: Image Structure, Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)

    Google Scholar 

  22. Florack, L.M.J., Maas, R., Niessen, W.J.: Pseudo-linear scale-space theory. Int. J. Comput. Vis. 31(2/3), 247–259 (1999)

    Article  Google Scholar 

  23. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon Press, Oxford (1997)

    Google Scholar 

  24. Heijmans, H.J.A.M.: Morphological scale-spaces, scale-invariance and Lie groups. In: H. Talbot, R. Beare (eds.) International Symposium on Mathematical Morphology, pp. 253–264 (2002)

  25. Heijmans, H.J.A.M., Maragos, P.: Lattice calculus of the morphological slope transform. Signal Process. 59(1), 17–42 (1997)

    Article  MATH  Google Scholar 

  26. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). In Japanese

    Google Scholar 

  27. Iijima, T.: Basic theory on normalization of two-dimensional visual pattern. Stud. Inf. Control (IECE, Japan) 1, 15–22 (1963). Pattern Recognition Issue. In Japanese

  28. Iijima, T.: Basic equation of figure and observational transformation. Syst. Comput. Controls 2(4), 70–77 (1971)

    Google Scholar 

  29. Jackway, P.T.: Properties of multiscale morphological smoothing by poweroids. Pattern Recognit. Lett. 15(2), 135–140 (1994)

    Article  MATH  Google Scholar 

  30. Jackway, P.T.: On dimensionality in multiscale morphological scale-space with elliptic poweroid structuring functions. J. Vis. Commun. Image Represent. 6(2), 189–195 (1995)

    Article  Google Scholar 

  31. Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. Pattern Anal. Mach. Intell. 18, 38–51 (1996)

    Article  Google Scholar 

  32. Kanters, F., Florack, L., Duits, R., Platel, B., Haar Romeny, B.: ScaleSpaceViz: \(\alpha \)-scale spaces in practice. Pattern Recognit. Image Anal. 17(1), 106–116 (2007)

  33. Kimia, B.B., Siddiqi, K.: Geometric heat equation and non-linear diffusion of shapes and images. Comput. Vis. Image Underst. 64, 305–322 (1996)

    Article  Google Scholar 

  34. Koenderink, J.J.: The structure of images. Biol. Cybernet. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Landström, A.: An approach to adaptive quadratic structuring functions based on the local structure tensor. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 9082, pp. 729–740. Springer, Berlin (2015)

    Chapter  Google Scholar 

  36. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  37. Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equations. Research Notes In Mathematics, vol. 69. Pitman, London (1992)

  39. Lowe, D.L.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  40. Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  41. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161. AMS, Providence (2015)

  42. Maragos, P.: Morphological systems: slope transforms and max-min difference and differential equations. Signal Process. 38(1), 57–77 (1994)

    Article  MATH  Google Scholar 

  43. Maragos, P., Schafer, R.: Morphological filters-Part I: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1153–1169 (1987)

  44. Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space and edge detection filters. J. Math. Imaging Vis. 7, 291–307 (1997)

    Article  MathSciNet  Google Scholar 

  45. Olsen, O., Florack, L., Kuijper, A. (eds.): Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, vol. 3753. Springer, Berlin (2005)

    Google Scholar 

  46. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  47. Otsu, N.: Mathematical studies on feature extraction in pattern recognition. Tech. Rep. 818 (PhD Thesis), Electrotechnical Laboratory, Tsukuba, Japan (1981). (In Japanese)

  48. Pauwels, E.J., Van Gool, L.J., Fiddelaers, P., Moons, T.: An extended class of scale-invariant and recursive scale space filters. IEEE Trans. Pattern Anal. Mach. Intell. 17, 691–701 (1995)

    Article  Google Scholar 

  49. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  50. Poggio, T., Voorhees, H., Yuille, A.: A regularized solution to edge detection. J. Complex. 4(2), 106–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  52. Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vis. 11, 25–44 (1993)

    Article  MATH  Google Scholar 

  53. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12(1), 43–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Schmidt, M., Weickert, J.: The morphological equivalents of relativistic and alpha-scale-spaces. In: Aujol, J., Nikolova, M., Papadakis, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 9087, pp. 28–39. Springer, Berlin (2015)

    Google Scholar 

  55. Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision, vol. 8. Kluwer, Dordrecht (1997)

    Google Scholar 

  56. Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Applied Mathematical Sciences. Springer, New York (2010)

    Google Scholar 

  57. van den Boomgaard, R.: Mathematical morphology: Extensions towards computer vision. Ph.D. thesis, University of Amsterdam, The Netherlands (1992)

  58. van den Boomgaard, R.: The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde 10(3), 219–236 (1992)

    MathSciNet  MATH  Google Scholar 

  59. van den Boomgaard, R., Smeulders, A.: The morphological structure of images: the differential equations of morphological scale-space. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1101–1113 (1994)

    Article  Google Scholar 

  60. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  61. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Welk, M.: Families of generalised morphological scale spaces. In: Griffin, L., Lillholm, M. (eds.) Scale Space Methods in Computer Vision. Lecture Notes in Computer Science, vol. 2695, pp. 770–784. Springer, Berlin (2003)

    Chapter  Google Scholar 

  63. Witkin, A.P.: Scale-space filtering. In: Proceedings of Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951. Karlsruhe, West Germany (1983)

Download references

Acknowledgments

Our research on this topic has been initiated by discussions between Joachim Weickert and Bernd Sturmfels (Berkeley) during the DEMAIN Conference in Münster (Sept. 30–Oct. 2, 2014). It is a pleasure to thank Angela Stevens (Münster) for organising this highly inspiring interdisciplinary conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M., Weickert, J. Morphological Counterparts of Linear Shift-Invariant Scale-Spaces. J Math Imaging Vis 56, 352–366 (2016). https://doi.org/10.1007/s10851-016-0646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0646-8

Keywords

Navigation