Advertisement

Journal of Mathematical Imaging and Vision

, Volume 37, Issue 3, pp 232–248 | Cite as

Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm

  • Vincent Duval
  • Jean-François Aujol
  • Luminita A. Vese
Open Access
Article

Abstract

In this paper, we are interested in texture modeling with functional analysis spaces. We focus on the case of color image processing, and in particular color image decomposition. The problem of image decomposition consists in splitting an original image f into two components u and v. u should contain the geometric information of the original image, while v should be made of the oscillating patterns of f, such as textures. We propose here a scheme based on a projected gradient algorithm to compute the solution of various decomposition models for color images or vector-valued images. We provide a direct convergence proof of the scheme, and we give some analysis on color texture modeling.

Keywords

Texture modeling Color image decomposition Projected gradient algorithm Color texture modeling 

References

  1. 1.
    Acar, R., Vogel, C.: Analysis of total variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1229 (1994) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adams, R.A.: Sobolev Spaces. Mathematics, vol. 65. Academic Press, San Diego (1975) MATHGoogle Scholar
  3. 3.
    Allard, W.K.: Total variation regularization for image denoising II: Examples. SIAM J. Imaging Sci. 1, 400–417 (2008) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000) Google Scholar
  5. 5.
    Andreu-Vaillo, F., Caselles, V., Mazon, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223. Birkhauser, Basel (2002) Google Scholar
  6. 6.
    Aubert, G., Aujol, J.-F.: Modeling very oscillating signals. Application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2001) Google Scholar
  8. 8.
    Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34(3), 307–327 (2009) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aujol, J.-F., Chan, T.F.: Combining geometrical and textured information to perform image classification. J. Vis. Commun. Image Represent. 17(5), 1004–1023 (2006) CrossRefGoogle Scholar
  11. 11.
    Aujol, J.-F., Gilboa, G.: Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26(1–2), 217–237 (2006) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Aujol, J.-F., Kang, S.H.: Color image decomposition and restoration. J. Vis. Commun. Image Represent. 17(4), 916–928 (2006) CrossRefGoogle Scholar
  13. 13.
    Aujol, J.-F., Aubert, G., Blanc-Fíraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005) CrossRefGoogle Scholar
  14. 14.
    Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006) CrossRefGoogle Scholar
  15. 15.
    Beck, A., Teboule, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009) CrossRefGoogle Scholar
  16. 16.
    Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A l1-unified variational framework for image restoration. In: ECCV 04. Lecture Notes in Computer Sciences, vol. 3024, pp. 1–13. Springer, Berlin (2004) Google Scholar
  17. 17.
    Bermudez, A., Moreno, C.: Duality methods for solving variational inequalities. Comput. Maths. Appl. 7(1), 43–58 (1981) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bioucas-Dias, J., Figueiredo, M.: Thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Blomgren, P., Chan, T.: Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998) CrossRefGoogle Scholar
  20. 20.
    Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Chambolle, A.: An algorithm for total variation minimization and its applications. J. Math. Imaging Vis. 20, 89–97 (2004) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: EMMCVPR. Lecture Notes in Computer Sciences, vol. 3757, pp. 136–152. Springer, Berlin (2005) Google Scholar
  23. 23.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(3), 167–188 (1997) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Chambolle, A., Levine, S.E., Lucier, B.J.: Some variations on total variation-based image smoothing (2009) Google Scholar
  25. 25.
    Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Chan, T., Shen, J.: Image Processing and Analysis—Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005) MATHGoogle Scholar
  27. 27.
    Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Chan, T.F., Kang, S.H., Shen, J.: Total variation denoising and enhancement of color images based on the cb and hsv color models. J. Vis. Commun. Image Represent. 12, 2001 (2000) Google Scholar
  29. 29.
    Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (2007) CrossRefGoogle Scholar
  30. 30.
    Combettes, P.L., Pesquet, J.: Image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13(9), 1213–1222 (2004) CrossRefGoogle Scholar
  31. 31.
    Combettes, P.L., Wajs, V.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2005) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Darbon, J.: Total variation minimization with l 1 data fidelity as a contrast invariant filter. In: 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), pp. 221–226. September (2005) Google Scholar
  33. 33.
    Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation Part I: Fast and exact optimization. J. Math. Imaging Vis. 26(3), 261–276 (2006) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Appl. Comput. Harmon. Anal. 19, 1–16 (2005) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004) MATHCrossRefGoogle Scholar
  36. 36.
    Dobson, D., Vogel, C.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L 1 fidelity on frame coefficients. CMLA Report, 08-40 (2008) Google Scholar
  38. 38.
    Duval, V., Aujol, J.-F., Gousseau, Y.: The TVL1 model: a geometric point of view. SIAM J. Multiscale Model. Simul. 8, 154–189 (2009) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Eckstein, J.: The Lions-Mercier algorithm and the alternating direction method are instances of the proximal point algorithm (1988) Google Scholar
  40. 40.
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999) MATHGoogle Scholar
  41. 41.
    Fadili, J., Starck, J.-L.: Monotone operator splitting for optimization problems in sparse recovery. In: IEEE ICIP, Cairo, Egypt (2009) Google Scholar
  42. 42.
    Fu, H., Ng, M., Nikolova, M., Barlow, J.: Efficient minimization methods of mixed l1-l1 and l2-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006) MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    G Ciarlet, P.: Introduction “l’Analyse Numírique Matricielle et” l’Optimisation. Dunod, Paris (1998) Google Scholar
  44. 44.
    Garnett, J., Jones, P., Le, T., Vese, L.: Modeling oscillatory components with the homogeneous spaces BMO α and W α,p. UCLA CAM Report, 07-21, July (2007) Google Scholar
  45. 45.
    Gilles, J.: Noisy image decomposition: a new structure, textures and noise model based on local adaptivity. J. Math. Imaging Vis. 28(3) (2007) Google Scholar
  46. 46.
    Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005) MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Haddad, A.: Míthodes variationnelles en traitement d’images. PhD thesis, ENS Cachan (2005) Google Scholar
  48. 48.
    Julesz, B.: Texton gradients: The texton theory revisited. Biol. Cybern. 54, 245–251 (1986) MATHCrossRefGoogle Scholar
  49. 49.
    Le, T., Vese, L.: Image decomposition using total variation and div(BMO). Multiscale Model. Simul., SIAM Interdiscip. J. 4(2), 390–423 (2005) MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Lieu, L.: Contribution to problems in image restoration, decomposition, and segmentation by variational methods and partial differential equations. PhD thesis, UCLA (2006) Google Scholar
  51. 51.
    Lieu, L.H., Vese, L.A.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58, 167–193 (2009) CrossRefMathSciNetGoogle Scholar
  52. 52.
    Lions, P.L., Mercier, B.: Algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979) MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. American Mathematical Society, Providence (2001). The fifteenth Dean Jacqueline B. Lewis memorial lectures MATHGoogle Scholar
  54. 54.
    Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. (A) 103(1), 127–152 (2005) MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Ng, M.K., Qi, L., Yang, Y.F., Huang, Y.: On semismooth Newton methods for total variation minimization. J. Math. Imaging Vis. 27, 265–276 (2007) CrossRefMathSciNetGoogle Scholar
  56. 56.
    Nikolova, M., Chan, R.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16(6), 1623–1627 (2007) CrossRefMathSciNetGoogle Scholar
  57. 57.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphic. Springer, Berlin (2003) Google Scholar
  58. 58.
    Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003) MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Rudin, L., Osher, S., Fatemi, E.: Non linear total variation based noise removal algorithms. Physica D 60, 259–268 (2003) CrossRefGoogle Scholar
  60. 60.
    Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996) CrossRefGoogle Scholar
  61. 61.
    Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. Preprint, University of Mannheim (2008) Google Scholar
  62. 62.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998) MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2003) MATHGoogle Scholar
  64. 64.
    Starck, J.L., ELad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach (2005) Google Scholar
  65. 65.
    Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003) MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Vese, L.A., Osher, S.J.: Color texture modeling and color image decomposition in a variational-PDE approach. In: Proceedings of the Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC ’06), pp. 103–110. IEEE, New York (2006) CrossRefGoogle Scholar
  67. 67.
    Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics, vol. 23. SIAM, Philadelphia (2002) MATHGoogle Scholar
  68. 68.
    Weiss, P., Blanc-Fíraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009) CrossRefMathSciNetGoogle Scholar
  69. 69.
    Yin, W., Goldfarb, D.: Second-order cone programming methods for total variation based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005) MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Yin, W., Goldfarb, D., Osher, S.: Image cartoon-texture decomposition and feature selection using the total variation regularized l 1. In: Variational, Geometric, and Level Set Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3752, pp. 73–84. Springer, Berlin (2005) CrossRefGoogle Scholar
  71. 71.
    Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Vis. Commun. Image Represent. 18(3), 240–252 (2007) CrossRefGoogle Scholar
  72. 72.
    Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J. Math. Imaging Vis. 33(2), 169–177 (2009) CrossRefGoogle Scholar
  73. 73.
    Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration, May (2008). UCLA CAM Report 08-34 Google Scholar
  74. 74.
    Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total variation image restoration. Comput. Optim. Appl. (2008). doi: 10.1007/s10589-008-9225-2 Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Vincent Duval
    • 1
  • Jean-François Aujol
    • 2
    • 3
  • Luminita A. Vese
    • 4
  1. 1.Institut TelecomTelecom ParisTech, CNRS UMR 5141Paris cedex 13France
  2. 2.CMLA, ENS CachanCNRS, UniverSudCachanFrance
  3. 3.LATP, CMIUMR CNRS 6632, Université de ProvenceMarseille cedex 13France
  4. 4.UCLA, Mathematics DepartmentLos AngelesUSA

Personalised recommendations