Journal of Mathematical Imaging and Vision

, Volume 35, Issue 3, pp 173–185 | Cite as

General Adaptive Neighborhood Choquet Image Filtering



A novel framework entitled General Adaptive Neighborhood Image Processing (GANIP) has been recently introduced in order to propose an original image representation and mathematical structure for adaptive image processing and analysis. The central idea is based on the key notion of adaptivity which is simultaneously associated with the analyzing scales, the spatial structures and the intensity values of the image to be addressed. In this paper, the GANIP framework is briefly exposed and particularly studied in the context of Choquet filtering (using fuzzy measures), which generalizes a large class of image filters. The resulting spatially-adaptive operators are studied with respect to the general GANIP framework and illustrated in both the biomedical and materials application areas. In addition, the proposed GAN-based filters are practically applied and compared to several other denoising methods through experiments on image restoration, showing a high performance of the GAN-based Choquet filters.


Choquet filtering Fuzzy measure General adaptive neighborhoods Image restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amattouch, M.: Théorie de la mesure et analyse d’image. Master’s thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, France (2005) Google Scholar
  2. 2.
    Arce, G.R., Foster, R.E.: Detail-preserving ranked-order based filters for image processing. IEEE Trans. Acoust. Speech Signal Process. 37(1), 83–98 (1989) CrossRefGoogle Scholar
  3. 3.
    Brailean, J.C., Little, D., Giger, M.L., Chen, C.T., Sullivan, B.J.: A quantitative performance evaluation of the EM algorithm applied to radiographic images. In: Proceedings of the SPIE Conference on Biomedical Image Processing, pp. 40–46 (1991) Google Scholar
  4. 4.
    Brailean, J.C., Sullivan, B.J., Chen, C.T., Giger, M.L.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp. 2957–2960 (1991) Google Scholar
  5. 5.
    Brownrigg, D.R.K.: The weighted median filter. Commun. ACM 27, 807–818 (1984) CrossRefGoogle Scholar
  6. 6.
    Buades, A., Coll, B., Morel, J.: On image denoising methods. Technical report, CMLA, ENS Cachan (2004) Google Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 20–25 (2005) Google Scholar
  8. 8.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953) MathSciNetGoogle Scholar
  10. 10.
    Choquet, G.: Topology. Academic Press, New York (1966) MATHGoogle Scholar
  11. 11.
    Debayle, J., Pinoli, J.C.: Spatially adaptive morphological image filtering using intrinsic structuring elements. Image Anal. Stereol. 24(3), 145–158 (2005) MATHMathSciNetGoogle Scholar
  12. 12.
    Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—Part I: Introduction and theoretical aspects. J. Math. Imaging Vis. 25(2), 245–266 (2006) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—Part II: Practical application examples. J. Math. Imaging Vis. 25(2), 267–284 (2006) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Deng, G.: An entropy interpretation of the logarithmic image processing model with application to contrast enhancement. IEEE Trans. Image Process. 18(5), 1135–1140 (2009) CrossRefGoogle Scholar
  15. 15.
    Deng, G., Cahill, L.W.: Multiscale image enhancement using the logarithmic image processing model. Electron. Lett. 29, 803–804 (1993) CrossRefGoogle Scholar
  16. 16.
    Deng, G., Cahill, L.W., Tobin, J.R.: A study of the logarithmic image processing model and its application to image enhancement. IEEE Trans. Image Process. 4, 506–512 (1995) CrossRefGoogle Scholar
  17. 17.
    Deng, G., Pinoli, J.C.: Differentiation-based edge detection using the logarithmic image processing model. J. Math. Imaging Vis. 8(2), 161–180 (1998) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425–455 (1994) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1992) Google Scholar
  20. 20.
    Gordon, R., Rangayyan, R.M.: Feature enhancement of mammograms using fixed and adaptive neighborhoods. Appl. Opt. 23(4), 560–564 (1984) CrossRefGoogle Scholar
  21. 21.
    Grabisch, M.: Fuzzy integrals as a generalized class of order filters. In: Proceedings of the SPIE, pp. 128–136 (1994) Google Scholar
  22. 22.
    Halmos, P.: Measure Theory. Van Nostrand, Princeton (1950) MATHGoogle Scholar
  23. 23.
    Jiang, L., Feng, X., Yin, H.: Variational image restoration and decomposition with curvelet shrinkage. J. Math. Imaging Vis. 30, 125–132 (2008) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Jourlin, M., Pinoli, J.C.: Logarithmic image processing. Acta Stereol. 6, 651–656 (1987) Google Scholar
  25. 25.
    Jourlin, M., Pinoli, J.C.: A model for logarithmic image processing. J. Microsc. 149, 21–35 (1988) Google Scholar
  26. 26.
    Jourlin, M., Pinoli, J.C.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron Phys. 115, 129–196 (2001) Google Scholar
  27. 27.
    Jourlin, M., Pinoli, J.C., Zeboudj, R.: Contrast definition and contour detection for logarithmic images. J. Microsc. 156, 33–40 (1988) Google Scholar
  28. 28.
    Koc, S., Ercelebi, E.: Image restoration by lifting-based wavelet domain E-median filter. ETRI J. 28(1), 51–58 (2006) CrossRefGoogle Scholar
  29. 29.
    Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs (1990) Google Scholar
  30. 30.
    Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994) CrossRefGoogle Scholar
  31. 31.
    Mallat, S.G.: A theory for multiresolution decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989) MATHCrossRefGoogle Scholar
  32. 32.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, San Fransisco (1982) Google Scholar
  33. 33.
    Mekki Berrada, M.K., Gruy, F., Kuntzsch, T., Cournil, M.: Multi-scale agglomerate synthesis by homogeneous precipitation. Ceram. Trans. 172, 3–9 (2005) Google Scholar
  34. 34.
    Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29, 201–227 (1989) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Oppenheim, A.V.: Generalized superposition. Inf. Control 11, 528–536 (1967) MATHCrossRefGoogle Scholar
  36. 36.
    Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals. In: Proceedings of the IEEE, pp. 1264–1291 (1968) Google Scholar
  37. 37.
    Palomares, J.M., Gonzalez, J., Ros, E., Prieto, A.: General logarithmic image processing convolution. IEEE Trans. Image Process. 15(11), 3602–3608 (2006) CrossRefGoogle Scholar
  38. 38.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990) CrossRefGoogle Scholar
  39. 39.
    Pinoli, J.C.: A contrast definition for logarithmic images in the continuous setting. Acta Stereol. 10, 85–96 (1991) MATHGoogle Scholar
  40. 40.
    Pinoli, J.C.: A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches. Signal Process. 58, 11–45 (1997) MATHCrossRefGoogle Scholar
  41. 41.
    Pinoli, J.C.: The logarithmic image processing model: connections with human brightness perception and contrast estimators. J. Math. Imaging Vis. 7(4), 341–358 (1997) CrossRefGoogle Scholar
  42. 42.
    Pinoli, J.C., Debayle, J.: Logarithmic adaptive neighborhood image processing (LANIP): introduction, connections to human brightness perception and application issues. J. Adv. Signal Process.—Spec. Issue Image Percept. 2007, 36105 (2007), 22 p Google Scholar
  43. 43.
    Pratt, W.K.: Digital Image Processing. Wiley, New York (1991) MATHGoogle Scholar
  44. 44.
    Rosenfeld, A.: Picture Processing by Computers. Academic Press, New York (1969) Google Scholar
  45. 45.
    Roux, B., Faure, R.M.: Recognition and quantification of clinker phases by image analysis. Acta Stereol. 11, 149–154 (1992) Google Scholar
  46. 46.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) MATHCrossRefGoogle Scholar
  47. 47.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3441–3452 (2006) CrossRefGoogle Scholar
  48. 48.
    Stockham, T.G.: Image processing in the context of a visual model. In: Proceedings of the IEEE, pp. 825–842 (1972) Google Scholar
  49. 49.
    Sugeno, M.: Theory of fuzzy integrals ans its applications. Ph.D. thesis, Tokyo Institute of Technology (1974) Google Scholar
  50. 50.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the International Conference on Computer Vision, Bombay, India, pp. 839–846 (1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre CIS-LPMG, UMR CNRS 5148Ecole Nationale Supérieure des Mines de Saint-EtienneSaint-Etienne cedex 2France

Personalised recommendations