Advertisement

Journal of Mathematical Imaging and Vision

, Volume 29, Issue 2–3, pp 131–140 | Cite as

Combining Points and Tangents into Parabolic Polygons

An Affine Invariant Model for Plane Curves
  • Marcos Craizer
  • Thomas Lewiner
  • Jean-Marie Morvan
Article

Abstract

Image and geometry processing applications estimate the local geometry of objects using information localized at points. They usually consider information about the tangents as a side product of the points coordinates. This work proposes parabolic polygons as a model for discrete curves, which intrinsically combines points and tangents. This model is naturally affine invariant, which makes it particularly adapted to computer vision applications. As a direct application of this affine invariance, this paper introduces an affine curvature estimator that has a great potential to improve computer vision tasks such as matching and registering. As a proof-of-concept, this work also proposes an affine invariant curve reconstruction from point and tangent data.

Keywords

Affine differential geometry Affine curvature Affine length Curve reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ȧström, K.: Fundamental limitations on projective invariants of planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 17, 77–81 (1995) CrossRefGoogle Scholar
  2. 2.
    Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40(3), 235–248 (2000) MATHCrossRefGoogle Scholar
  3. 3.
    Buchin, S.: Affine Differential Geometry. Academic Press, New York (1982) Google Scholar
  4. 4.
    Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Hacker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26(2), 107–135 (1998) CrossRefGoogle Scholar
  5. 5.
    Calabi, E., Olver, P.J., Tannenbaum, A.: Affine geometry, curve flows, and invariant numerical approximations. Adv. Math. 124, 154–196 (1997) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Craizer, M., Lewiner, T., Morvan, J.-M.: Parabolic polygons and discrete affine geometry. In: 19th Brazilian Symposium on Computer Graphics and Image Processing, Manaus, AM, October 2006, pp. 19–26 (2006) Google Scholar
  7. 7.
    da Fontoura Costa, L., Cesare, R.M. Jr.: Shape Analysis and Classification. CRC Press, Boca Raton (2000) Google Scholar
  8. 8.
    Figueiredo, L.H., Gomes, J.M.: Computational morphology of curves. Vis. Comput. 11, 105–112 (1994) CrossRefGoogle Scholar
  9. 9.
    Hoppe, H., de Rose, T., Duchamp, T., Donald, J.M., Stuetzle, W.: Surface reconstruction from unorganized points. In: Siggraph, pp. 71–78 (1992) Google Scholar
  10. 10.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975) CrossRefGoogle Scholar
  11. 11.
    Tang, C.-K., Lee, M.-S., Medioni, G.: Tensor voting. In: Recent Advances in Perceptual Organization. Kluwer, Dordrecht (2006) Google Scholar
  12. 12.
    Lewiner, T., Gomes, J. Jr., Lopes, H., Craizer, M.: Arc-length based curvature estimator. In: Sibgrapi, Curitiba, October 2004, pp. 250–257. IEEE, New York (2004) Google Scholar
  13. 13.
    Cohen, L.D.: On active contour models and balloons. Comput. Vis. Image Underst. 2(53), 211–218 (1991) CrossRefGoogle Scholar
  14. 14.
    Amenta, N., Kil, Y.J.: Defining point-set surfaces. Trans. Graph. 23(3), 264–270 (2004) CrossRefGoogle Scholar
  15. 15.
    Lewiner, T., Craizer, M.: Convergence of affine estimators on parabolic polygons. Technical report, Pontifícia Universidade Católica do Rio de Janeiro (2007) Google Scholar
  16. 16.
    Ludwig, M.: Asymptotic approximation by quadratic spline curves. Ann. Univ. Sci. Bp. 42, 133–139 (1999) MATHMathSciNetGoogle Scholar
  17. 17.
    Mitra, N.J., Nguyen, A.T.: Estimating surface normals in noisy point cloud data. In: Symposium on Computational Geometry, pp. 322–328 (2003) Google Scholar
  18. 18.
    Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992) Google Scholar
  19. 19.
    Zuliani, M., Bhagavathy, S., Manjunath, B.S., Kenney, C.S.: Affine-invariant curve matching. In IEEE International Conference on Image Processing, October 2004 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marcos Craizer
    • 1
  • Thomas Lewiner
    • 1
  • Jean-Marie Morvan
    • 2
  1. 1.Department of MathematicsPUC-RioRio de JaneiroBrazil
  2. 2.Université Claude BernardLyonFrance

Personalised recommendations