Journal of Mathematical Imaging and Vision

, Volume 28, Issue 3, pp 285–295 | Cite as

Noisy Image Decomposition: A New Structure, Texture and Noise Model Based on Local Adaptivity

  • Jérôme Gilles


These last few years, image decomposition algorithms have been proposed to split an image into two parts: the structures and the textures. These algorithms are not adapted to the case of noisy images because the textures are corrupted by noise. In this paper, we propose a new model which decomposes an image into three parts (structures, textures and noise) based on a local regularization scheme. We compare our results with the recent work of Aujol and Chambolle. We finish by giving another model which combines the advantages of the two previous ones.


Image decomposition BV Texture Noise Oscillating functions Besov spaces Local adaptivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Decomposing an image: Application to SAR images. In: Scale-Space’03. Lecture Notes in Computer Science, vol. 1682 (2003) Google Scholar
  2. 2.
    Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2002) MathSciNetGoogle Scholar
  3. 3.
    Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures. American Mathematical Society (2001) Google Scholar
  4. 4.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004) MathSciNetGoogle Scholar
  5. 5.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992) MATHCrossRefGoogle Scholar
  6. 6.
    Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gilboa, G., Zeevi, Y., Sochen, N.: Texture preserving variational denoising using an adaptive fidelity term. IEEE Trans. Image Process. 15(8), 2281–2289 (2006) CrossRefGoogle Scholar
  8. 8.
    Gilboa, G., Sochen, N., Zeevi, Y.: Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8), 2269–2280 (2006) CrossRefGoogle Scholar
  9. 9.
    Chambolle, A., DeVore, R.A., Lee, N., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure–texture image decomposition-modeling, algorithms and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006) CrossRefGoogle Scholar
  11. 11.
    Aujol, J.F.: Contribution à l’analyse de textures en traitement d’images par méthodes variationnelles et équations aux dérivées partielles. Ph.D. thesis, Université de Nice Sophia Antipolis (2004) Google Scholar
  12. 12.
    Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gilles, J.: Décomposition et détection de structures géométriques en imagerie. Ph.D. thesis, Ecole Normale Supérieure de Cachan (2006) Google Scholar
  14. 14.
    Haddad, A.: Méthodes variationnelles en traitement d’image. Ph.D. Ecole Normale Supérieure de Cachan (2005) Google Scholar
  15. 15.
    Lieu, L.: Contribution to problems in image restoration, decomposition, and segmentation by variational methods and partial differential equations. Ph.D. thesis, CAM Report 06-46 (2006) Google Scholar
  16. 16.
    Garnett, J.B., Le, T.M., Meyer, Y., Vese, L.: Image decompositions using bounded variation and homogeneous Besov spaces. CAM Report 05-57 (2005) Google Scholar
  17. 17.
    Le, T.M., Vese, L.: Image decomposition using total variation and div(BMO). CAM Report 04-36 (2004) Google Scholar
  18. 18.
    Haddad, A., Meyer, Y.: Variational methods in image processing. CAM Report 04-52 (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centre d’Expertise ParisienArcueil CedexFrance

Personalised recommendations