Host–guest complexation of omeprazole, pantoprazole and rabeprazole sodium salts with cyclodextrins: an NMR study on solution structures and enantiodiscrimination power

  • Jordi Redondo
  • Anna Capdevila
  • Isabel Latorre
  • Jordi Bertrán
Original Article


The application of different cyclodextrins (CDs) as NMR chiral solvating agents (CSAs) for the sodium salts of the proton-pump inhibitors omeprazole, pantoprazole (sesquihydrate) and rabeprazole was investigated. It was proved that the formation of diastereomeric host–guest complexes in D2O solution between the CDs and those substrates permitted the direct 1H NMR discrimination of the enantiomers of the sodium salts of these compounds without the need of previous working-up. Rotating frame nuclear overhauser effect spectroscopy (ROESY) was used to ascertain the solution geometries of the host–guest complexes. The results suggested a preferential binding of the benzimidazole moiety of the guest molecules within the macrocyclic cavity of α-CD, whereas the higher dimensions of β- and γ-CD also permitted the inclusion of the highly substituted pyridine moieties. Moreover, the solution stoichiometries and the binding constants of the complexes formed with pantoprazole at room temperature were determined by 1H and 19F NMR titration. Diffusion-filtered Spectroscopy was applied to obtain clean spectra without the interference of the HOD signal.


1H and 19F NMR Omeprazole Pantoprazole Rabeprazole Enantiorecognition ROESY 

Supplementary material

10847_2011_46_MOESM1_ESM.pdf (379 kb)
Supplementary material 1 (PDF 379 kb)


  1. 1.
    Claramunt, R.M., López, C., Alkorta, I., Elguero, J., Yang, R., Schulman, S.: The tautomerism of Omeprazole in solution: a 1H and 13C NMR study. Magn. Reson. Chem. 42, 712–714 (2004)CrossRefGoogle Scholar
  2. 2.
    Lindberg, P., Brändström, A., Wallmark, B., Mattsson, H., Rikner, L., Hoffman, K.J.: Omeprazole: the first proton pump inhibitor. Med. Res. Rev. 10, 1–54 (1990)CrossRefGoogle Scholar
  3. 3.
    Shi, S., Klotz, U.: Proton pump inhibitors: an update of their clinical use and pharmacokinetics. Eur. J. Clin. Pharmacol. 64, 935–951 (2008)CrossRefGoogle Scholar
  4. 4.
    Olbe, L., Carlsson, E., Lindberg, P.: A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat. Rev. Drug Discov. 2, 132–139 (2003)CrossRefGoogle Scholar
  5. 5.
    Andersson, T., Weidolf, L.: Stereoselective disposition of proton pump inhibitors. Clin. Drug Investig. 28, 263–279 (2008)CrossRefGoogle Scholar
  6. 6.
    Anon.: Development of new stereoisomeric drugs. Food and Drug Administration. Accessed 5 September 2011
  7. 7.
    Branch, S.: International regulation of chiral drugs. In: Subramanian, G. (ed.) Chiral Separation Techniques. A Practical Approach, pp. 319–342. Wiley-VCH, Weinheim (2001)Google Scholar
  8. 8.
    Weisman, G.R.: Nuclear magnetic resonance analysis using chiral solvating agents. Asymm. Synth. 1, 153–171 (1983)Google Scholar
  9. 9.
    Wenzel, T.J.: Lanthanide chiral solvating agent couples as chiral NMR shift reagents. Trends Org. Chem. 8, 51–64 (2000)Google Scholar
  10. 10.
    Yamaguchi, S.: Nuclear magnetic resonance analysis using chiral derivatives. Asymm. Synth. 1, 125–152 (1983)Google Scholar
  11. 11.
    Wenzel, T.J., Wilcox, J.D.: Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15, 256–270 (2003)CrossRefGoogle Scholar
  12. 12.
    Courtieu, J., Lesot, P., Meddour, A., Merlet, D., Aroulanda, C.: Chiral liquid crystal NMR: a tool for enantiomeric analysis. In: Grant, D.M., Harris, R. (eds.) Encyclopedia of Nuclear Magnetic Resonance, pp. 497–505. Wiley, New York (2002)Google Scholar
  13. 13.
    Sugiura, M., Kimura, A., Fujiwara, H.: Discrimination of enantiomers by means of NMR spectroscopy using chiral liquid crystalline solution: application to triazole fungicides, uniconazole and diniconazole. Magn. Reson. Chem. 44, 121–126 (2006)CrossRefGoogle Scholar
  14. 14.
    Greatbanks, D., Pickford, R.: Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements. Magn. Reson. Chem. 25, 208–215 (1987)CrossRefGoogle Scholar
  15. 15.
    Redondo, J., Blázquez, M.A., Torrens, A.: Chiral discrimination of the analgesic cizolirtine by using cyclodextrins: a 1H NMR study on the solution structures of their host-guest complexes. Chirality 11, 694–700 (1999)CrossRefGoogle Scholar
  16. 16.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  17. 17.
    Cserhati, T.: Cyclodextrins in HPLC. Encyclopedia of Chromatography, vol. 1, 3rd edn., pp. 546–556 (2010)Google Scholar
  18. 18.
    Cserhati, T.: Cyclodextrins in GC. Encyclopedia of Chromatography, vol. 1, 3rd edn., pp. 536–545 (2010)Google Scholar
  19. 19.
    Chankvetadze, B.: Chiral compounds: separation by CE and MEKC with cyclodextrins. Encyclopedia of Chromatography, vol. 1, 3rd edn, pp. 419–424 (2010)Google Scholar
  20. 20.
    Thunhorst, M., Holzgrabe, U.: Utilizing NMR spectroscopy for assessing drug enantiomeric composition. Magn. Reson. Chem. 36, 211–216 (1998)CrossRefGoogle Scholar
  21. 21.
    Cirilli, R., Ferretti, R., Gallinella, B., De Santis, E., Zanitti, L., La Torre, F.: High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J. Chromatogr. A 1177, 105–113 (2008)CrossRefGoogle Scholar
  22. 22.
    Berzas-Nevado, J.J., Castaneda-Penalvo, G., Rodríguez-Dorado, R.M.: Method development and validation for the separation and determination of omeprazole enantiomers in pharmaceutical preparations by capillary electrophoresis. Anal. Chim. Acta 533, 127–133 (2005)CrossRefGoogle Scholar
  23. 23.
    Toribio, L., Alonso, C., del Nozal, M.J., Bernal, J.L., Jiménez, J.J.: Enantiomeric separation of chiral sulfoxides by supercritical fluid chromatography. J. Sep. Sci. 29, 1363–1372 (2006)CrossRefGoogle Scholar
  24. 24.
    Figueiras, A., Sarraguça, J.M.G., Carvalho, R.A., Pais, A.A.C.C., Veiga, F.J.B.: Interaction of omeprazole with a methylated derivative of β-cyclodextrin: phase solubility, NMR spectroscopy and molecular simulation. Pharm. Res. 24, 377–389 (2007)CrossRefGoogle Scholar
  25. 25.
    Redondo, J., Capdevila, A., Latorre, I.: Use of (S)-BINOL as NMR chiral solvating agent for the enantiodiscrimination of omeprazole and its analogs. Chirality 22, 472 (2010)Google Scholar
  26. 26.
    Coppi, L., Berenguer, R.: Method for obtaining derivatives of [[substituted-pyridyl)methyl]thio]benzimidazole, useful as intermediates for omeprazole and related antiulcer agents. PCT Int. Appl. WO 2001079194 A1Google Scholar
  27. 27.
    Berenguer, R., Campón, J., Coppi, L.: Method for oxidizing a thioether group into a sulfoxide group in benzimidazole derivatives. PCT Int. Appl. WO 2001068594 A1Google Scholar
  28. 28.
    Coppi, L., Berenguer, R., Gasanz, Y., Medrano, J.: Process for the preparation of optically active derivatives of 2-(2-pyridylmethylsulfinyl)-benzimidazole via inclusion complex with 1,1′-binaphthalene-2,2′-diol. PCT Int. Appl. WO 2006094904 A1Google Scholar
  29. 29.
    Anon.: Esomeprazole magnesium trihydrate monograph. European Pharmacopoeia 6th edition 2009 (
  30. 30.
    Esturau, N., Espinosa, J.F.: Optimization of diffusion-filtered NMR experiments for selective suppression of residual nondeuterated solvent and water signals from 1H NMR spectra of organic compounds. J. Org. Chem. 71, 4103–4110 (2006)CrossRefGoogle Scholar
  31. 31.
    Figueiras, A., Sarraguça, J.M.G., Pais, A.A.C.C., Veiga, F.J.B., Carvalho, R.A.: New insight into the discrimination between omeprazole enantiomers by cyclodextrins in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 62, 345–351 (2008)CrossRefGoogle Scholar
  32. 32.
    Braga, S.S., Ribeiro-Claro, P., Pillinger, M., Gonçalves, I.S., Fernandes, A.C., Pereira, F., Romao, C.C., Correa, P.B., Teixeira-Dias, J.J.C.: Interactions of omeprazole and precursors with β-cyclodextrin host molecules. J. Incl. Phenom. Macrocycl. Chem. 47, 47–52 (2003)CrossRefGoogle Scholar
  33. 33.
    Scott, R.L.: Some comments on the Benesi Hildebrand equation. Rec. Trav. Chim. 75, 787 (1956)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jordi Redondo
    • 1
  • Anna Capdevila
    • 1
  • Isabel Latorre
    • 1
  • Jordi Bertrán
    • 1
  1. 1.Department of Research and DevelopmentEsteve Química S.A.BarcelonaSpain

Personalised recommendations