Advertisement

A Vision-Based Navigation System for Perching Aircraft

  • D. M. K. K. Venkateswara Rao
  • Wu Yanhua
Open Access
Article
  • 999 Downloads

Abstract

This paper presents the investigation of the use of position-sensing diode (PSD) - a light source direction sensor - for designing a vision-based navigation system for a perching aircraft. Aircraft perching maneuvers mimic bird’s landing by climbing for touching down with low velocity or negligible impact. They are optimized to reduce their spatial requirements, like altitude gain or trajectory length. Due to disturbances and uncertainties, real-time perching is realized by tracking the optimal trajectories. As the performance of the controllers depends on the accuracy of estimated aircraft state, the use of PSD measurements as observations in the state estimation model is proposed to achieve precise landing. The performance and the suitability of this navigation system are investigated through numerical simulations. An optimal perching trajectory is computed by minimizing the trajectory length. Accelerations, angular-rates and PSD readings are determined from this trajectory and then added with experimentally obtained noise to create simulated sensor measurements. The initial state of the optimal perching trajectory is perturbed, and by assuming zero biases, extended Kalman filter is implemented for aircraft state estimation. It is shown that the errors between estimated and actual aircraft states reduce along the trajectory, validating the proposed navigation system.

Keywords

Aircraft perching Vision-based navigation Position sensing diode Extended Kalman filter 

Notes

Acknowledgements

The authors of this paper would like to thank Dr. Avishy Carmi for his guidance in the selection of the sensors for the navigation system. The authors would also like to thank Mohammad Alsharif and Dr. Yunus Emre Arslantas for providing the IMU noise measurements.

References

  1. 1.
    AliKhan, M., Peyada, N.K., Go, T.H.: Flight dynamics and optimization of three-dimensional perching maneuver. J. Guid. Control Dyn. 36(6), 1791–1797 (2013).  https://doi.org/10.2514/1.58894 CrossRefGoogle Scholar
  2. 2.
    Alonso, R., Crassidis, J. L., Junkins, J. L.: Vision-based relative navigation for formation flying of spacecraft. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Denver (2000)Google Scholar
  3. 3.
    Atkinson, K.E.: An introduction to numerical analysis. Wiley (2008)Google Scholar
  4. 4.
    Carmi, A., Oshman, Y.: Fast particle filtering for attitude and angular-rate estimation from vector observations. J. Guid. Control Dyn. 32(1), 70–78 (2009)CrossRefGoogle Scholar
  5. 5.
    Choe, R., Hovakimyan, N.: Perching maneuver for an mav augmented with an l1 adaptive controller. In: Proc. AIAA Guidance Navigation and Control Conference, pp. 8–11 (2011)Google Scholar
  6. 6.
    Cory, R., Tedrake, R.: Experiments in fixed-wing uav perching. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2008)Google Scholar
  7. 7.
    Crassidis, J., Markley, F., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control Dyn. 30(1), 12 (2007)CrossRefGoogle Scholar
  8. 8.
    Grymin, D. J., Farhood, M.: Two-step system identification and trajectory tracking control of a small fixed-wing uav. J. Intell. Robot. Syst. 83(1), 105–131 (2016)CrossRefGoogle Scholar
  9. 9.
    Jones, R.T.: The unsteady lift of a finite wing NACA Report (682) (1939)Google Scholar
  10. 10.
    Junkins, J. L., Hughes, D. C., Wazni, K. P., Pariyapong, V.: Vision-based navigation for rendezvous, docking, and proximity operations. In: 22nd Annual AAS Guidance and Control Conference, pp. 99–021. Citeseer, Breckenridge (1999)Google Scholar
  11. 11.
    Kim, H., Lee, S., Lee, S.: Numerical analysis on the aerodynamics of HAWTs using nonlinear vortex strength correction. Curr. Appl. Phys. 10(2), S311–S315 (2010)CrossRefGoogle Scholar
  12. 12.
    Leishman, J. G., Nguyen, K.Q.: State-space representation of unsteady airfoil behavior. AIAA J 28(5), 836–844 (1990)CrossRefGoogle Scholar
  13. 13.
    Lussier Desbiens, A., Cutkosky, M. R.: Landing and perching on vertical surfaces with microspines for small unmanned air vehicles. J. Intell. Robot. Syst. 57(1), 313–327 (2010)CrossRefGoogle Scholar
  14. 14.
    Maqsood, A., Go, T.H.: Optimization of transition maneuvers through aerodynamic vectoring. Aerosp. Sci. Technol. 23(1), 363–371 (2012).  https://doi.org/10.1016/j.ast.2011.09.004 CrossRefGoogle Scholar
  15. 15.
    Moore, J., Tedrake, R.: Powerline perching with a fixed-wing uav. In: AIAA Infotech@Aerospace Conference (2009)Google Scholar
  16. 16.
    Moore, J., Tedrake, R.: Magnetic localization for perching uavs on powerlines. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2700–2707. IEEE (2011)Google Scholar
  17. 17.
    Nelson, R. C.: Flight stability and automatic control, vol. 2. WCB/McGraw Hill (1998)Google Scholar
  18. 18.
    Paranjape, A., Chung, S. J., Kim, J. H.: Novel dihedral-based control of flapping-wing aircraft with application to perching. IEEE Trans. Robot. 29(5), 1071–1084 (2013)CrossRefGoogle Scholar
  19. 19.
    Schaefer, P., Williams, R. D., Davis, G. K., Ross, R., et al.: Accuracy of position detection using a position-sensitive detector. IEEE Trans. Instrum. Measur. 47(4), 914–919 (1998)CrossRefGoogle Scholar
  20. 20.
    Valasek, J., Gunnam, K., Kimmett, J., Junkins, J. L., Hughes, D., Tandale, M. D.: Vision-based sensor and navigation system for autonomous air refueling. J. Guid. Control Dyn. 28(5), 979–989 (2005)CrossRefGoogle Scholar
  21. 21.
    Venkateswara Rao, D.M.K.K., Go, T.H.: Perching trajectory optimization using aerodynamic and thrust vectoring. Aerosp. Sci. Technol. 31(1), 1–9 (2013)CrossRefGoogle Scholar
  22. 22.
    Venkateswara Rao, D.M.K.K., Go, T.H.: Optimization, stability analysis, and trajectory tracking of perching maneuvers. J. Guid. Control Dyn. 37(3), 879–888 (2014)CrossRefGoogle Scholar
  23. 23.
    Venkateswara Rao, D.M.K.K., Tang, H., Go, T.H.: A parametric study of fixed-wing aircraft perching maneuvers. Aerosp. Sci. Technol. 42, 459–469 (2015)CrossRefGoogle Scholar
  24. 24.
    Wankhede, M. R., Sinha, N. K.: Autorotational spin evolving towards chaos. J. Aircr. 49(4), 1183–1188 (2012)CrossRefGoogle Scholar
  25. 25.
    Wickenheiser, A., Garcia, E.: Perching aerodynamics and trajectory optimization. In: The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics (2007)Google Scholar
  26. 26.
    Wickenheiser, A., Garcia, E.: Optimization of perching maneuvers through vehicle morphing. J. Guid. Control Dyn. 31(4), 815–823 (2008).  https://doi.org/10.2514/1.33819 CrossRefGoogle Scholar
  27. 27.
    Yuksek, B., Vuruskan, A., Ozdemir, U., Yukselen, M., Inalhan, G.: Transition flight modeling of a fixed-wing vtol uav. J. Intell. Robot. Syst. 84(1-4), 83–105 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhou, W., Zhao, C., Guo, J.: The study of improving kalman filters family for nonlinear slam. J. Intell. Robot. Syst. 56(5), 543–564 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematics and Physical Sciences, College of EngineeringUniversity of ExeterExeterUK
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations