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Abstract
This paper presents the investigation of the use of position-sensing diode (PSD) - a light source direction sensor - for
designing a vision-based navigation system for a perching aircraft. Aircraft perching maneuvers mimic bird’s landing by
climbing for touching down with low velocity or negligible impact. They are optimized to reduce their spatial requirements,
like altitude gain or trajectory length. Due to disturbances and uncertainties, real-time perching is realized by tracking the
optimal trajectories. As the performance of the controllers depends on the accuracy of estimated aircraft state, the use of
PSD measurements as observations in the state estimation model is proposed to achieve precise landing. The performance
and the suitability of this navigation system are investigated through numerical simulations. An optimal perching trajectory
is computed by minimizing the trajectory length. Accelerations, angular-rates and PSD readings are determined from this
trajectory and then added with experimentally obtained noise to create simulated sensor measurements. The initial state of
the optimal perching trajectory is perturbed, and by assuming zero biases, extended Kalman filter is implemented for aircraft
state estimation. It is shown that the errors between estimated and actual aircraft states reduce along the trajectory, validating
the proposed navigation system.

Keywords Aircraft perching · Vision-based navigation · Position sensing diode · Extended Kalman filter

1 Introduction

Aircraft perching can be described as an unconventional
maneuver, with an objective of mimicking bird’s landing
by touching down with near-zero velocity, but without
flapping wings. The aircraft achieves this by executing a
climb maneuver [25], where most of its kinetic energy is
converted into potential energy, while the rest is lost due
to drag. The reduction in velocity can also be achieved by
rapid pitching of aircraft to high angles-of-attack for sudden
increase in aerodynamic drag [6, 13, 18], or by performing
a momentum reversal maneuver [1]. However, near-zero
velocity landing cannot be achieved by these strategies,
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and they are only suitable for aircraft which are extremely
light in weight and structurally strong. For perching by
climbing, aircraft initiates the maneuver with a sufficiently
large velocity such that climbing is sustained until the
velocity becomes nearly zero. If the aircraft does not have
the available thrust or power to cruise at the required initial
velocity for climbing, it performs a dive maneuver to reach
this velocity. These two phases of the maneuver are defined
as climb and dive phases, respectively, and the altitude gain
during climbing is defined as undershoot. An illustration of
perching maneuver is provided in Fig. 1.

The climb requirements of this maneuver make it infeasi-
ble for the aircraft to directly perch on the ground. To reduce
the spatial requirements of this maneuver, perching trajec-
tories are optimized by minimizing the undershoot [25] or
trajectory length [22]. Further reduction in spatial require-
ments can be achieved by using unconventional aircraft
design configurations, like morphing [26], aerodynamic and
thrust vectoring [21]. The design of the aircraft can also
be optimized [23] to achieve additional reduction in spatial
requirements.

Perching trajectories, determined by optimization, pro-
vide only open-loop type control inputs. In the presence
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Fig. 1 Illustration of perching maneuver

of aerodynamic and parameter uncertainties, as well as
external disturbances, these open-loop type control inputs,
without any corrections, lead to the deviation of aircraft
from the desired landing point as perching maneuvers are
unstable [22]. The problem can be addressed by the use
of feedback controllers [5, 22] to bring back the aircraft
to its nominal optimal trajectory. For real-time perching,
the performance of such controllers highly depends on the
estimated aircraft state. Due to the precise landing require-
ments of this maneuver, a high accuracy of the estimated
state is desired. Motion capture systems provide precise
navigation, with sub-millimeter and sub-millidegree accu-
racy in position and attitude, respectively, but they are very
expensive and the maneuver has to be confined to indoor
environments. For outdoor perching, the widely used civil-
ian Global Positioning System (GPS) can be employed, but
it has a horizontal accuracy of 3 m and a vertical accuracy
of 5 m. Depending on the availability, augmented posi-
tioning systems, like differential GPS, real-time kinematic
and precise point positioning, provide sub-decimal accu-
racy, but they all have a low update rate, which makes them
unsuitable for perching navigation.

An interesting navigation system has been proposed by
Moore and Tedrake [15, 16] for the localization of a glider
to perch on a power line. The glider is equipped with a
magnetometer, which senses the magnetic field induced
by the alternating current passing through the power line.
By predicting the state of the aircraft using the glider’s
dynamics, and using the magnetic field observation model,
the state - position, velocity, and orientation - of the
aircraft can be estimated recursively along the trajectory.
Alternatively, vision can also be used for the determination
of the state of a perching aircraft. In particular, this paper
focuses on investigating the use of position-sensing diode -
a light source direction sensor - for providing navigation to
the perching aircraft. This sensor has been successfully used
for providing relative navigation to aerospace problems, like
autonomous air refueling [20], spacecraft rendezvous [10]
and formation flying [2]. If there are a minimum of three
light sources with known location, the aircraft’s position
and orientation, relative to the light sources, can be easily
determined. The light-weight, low computational load for
measurement signal processing and high precision [19] are
the salient features for the selection of this sensor in this
paper.

To find the use of PSD for providing navigation to a
perching aircraft, this paper probes its suitability as follows.
An optimal perching trajectory, confining to the longitudinal
plane of motion, is computed, and is considered as a
reference trajectory. Accelerations and angular velocities
of the aircraft along this trajectory are determined, and
then corrupted by adding experimentally obtained noise
containing biases to create simulated sensor measurements.
Three light sources, acting as beacons, are assumed to be
placed near the landing point, as illustrated in Fig. 2. The
aircraft is equipped with a PSD, placed at the tip of the
right wing. Directions of the light sources are determined
for all the three beacons in a normalized vector form,

Fig. 2 Illustration of the
observation model
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along the trajectory, and then added with Gaussian noise
to generate simulated PSD measurements. The aircraft
equations of motion in the body-axis frame of reference [17,
24], with attitude kinematics represented by quaternion [7],
are discretized using the first-order Euler method, and are
considered as the state-space model. The three PSD sensor
measurements are treated as the observations. By perturbing
the initial state of the optimal perching trajectory and
assuming zero biases, aircraft state estimation is carried
out by implementing extended Kalman filter [28] using the
defined state and observation models, and simulated sensor
measurements. It is shown that the errors between the actual
and estimated states reduce along the trajectory, supporting
the use of PSD for providing a vision-based navigation
system to a perching aircraft.

The rest of this paper proceeds as follows. In Section 2,
background on the aircraft equations of motion, sensors of
the navigation system, state and observation models, and
extended Kalman filter is provided. Section 3 presents the
computation of reference perching trajectory, determination
of simulated sensor measurements and observations, results
and discussion of aircraft state estimation. Finally, Section 4
concludes the paper.

2 Background

2.1 Aircraft Equations of Motion

The nonlinear, six degree-of-freedom aircraft equations of
motion in the body-axis frame of reference [7, 17, 27] are
given by
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Ż

⎤
⎦ = Ri

b

⎡
⎣

u

v

w

⎤
⎦ (1c)
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u2 + v2 + w2 (1d)

where u, v and w are velocities, p, q and r are angular
rates in the x, y and z directions of the body-axis frame
of reference, respectively; X, Y and Z are coordinates of
the aircraft in the inertial frame of reference; q1, q2, q3 and
q4 are elements of quaternion vector, which represents the
attitude of the aircraft; s is the trajectory length; m is the
mass of the aircraft and g is gravity. Rb

i and Ri
b are the

attitude matrices, where i and b denote inertial and body

frames. For Rb
i the subscript i and superscript b means that

it transforms a vector from the inertial frame of reference to
the body-axis frame of reference. The attitude matrices are
related to each other, and to the quaternion elements as
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Fx , Fy and Fz are the resultant forces in x, y and z directions
of the body-axis frame of reference. They are related to the
thrust (T ), and aerodynamic forces, lift (L), drag (D) and
Yaw (Y ) as

Fx = T − D cosβ cosα − Y sinβ cosα + L sinα (3a)

Fy = −D sinβ + Y cosβ (3b)

Fz = −D cosβ sinα − Y sinβ sinα − L cosα (3c)

for which

L = 1

2
CLρV 2S (4a)

D = 1

2
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where CL, CD , and CY are lift, drag and yaw coefficients,
respectively; α is the angle-of-attack; β is the sideslip; V is
the total velocity; ρ is the air density; and S is the reference
surface area.

Quaternion is used for attitude representation to avoid
singularity that arises in attitude dynamics when the pitch
angle becomes 90◦. The Euler angles, yaw (ψ), pitch (θ )
and roll (φ), are related to the quaternion elements through
the following equations

ψ = atan2
(
2q1q2 + 2q3q4, q

2
1 − q2

2 − q2
3 + q2

4

)
(5a)

θ = asin (−2q1q3 − 2q2q4) (5b)

φ = atan2
(
2q2q3 − 2q1q4, q

2
3 − q2

2 − q2
1 + q2

4

)
(5c)

2.2 Sensors

Accelerometer, gyroscope and PSD are the three sensors
used in the current navigation system. Accelerometer
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senses the difference between acceleration and gravity
of the aircraft in the body axis frame of reference. The
accelerations, ax , ay and az along the x, y and z axes of the
body, respectively, in terms of the aircraft state variables,
aerodynamic forces and thrust are given as [8]

ax = Fx/m + bax (6a)

ay = Fy/m + bay (6b)

az = Fz/m + baz (6c)

where Fx , Fy and Fz are given in Eq. 3a–c, bax , bay and baz

are biases in x, y and z axes, respectively.
Gyroscope senses the aircraft’s angular rates, which are

also in the body frame of reference. The angular rates, ωx ,
ωy and ωz along the x, y and z axes of the body, are given
in terms of the aircraft state variables as

ωx = p + bωx (7a)

ωy = q + bωy (7b)

ωz = r + bωz (7c)

where bωx , bωy and bωz are biases in x, y and z axes,
respectively.

PSD sensor senses the direction of the light sources. The
sensor comprises a two-dimensional array of light sensing
diodes placed on a flat surface. This surface is placed in
the focal plane of a wide angle lens. When an infrared
light beacon emits light, it passes through the lens, and is
incident at a single point on the array of diodes. Due to
photoelectric effect, there will be a change in the electrical
current from which the point of incidence on the surface is
determined. Figure 3 provides an illustration of the working
of the sensor. If χ and γ are the coordinates of the light
incidence on the diode, and f is the focal length, then the
normalized vector form of line-of-sight observation bnorm is
given as

bnorm = −1√
χ2 + γ 2 + f 2

⎡
⎣

χ

γ

f

⎤
⎦ (8)

The normalized vector form of line-of-sight observations
are the PSD sensor measurements.

2.3 State and ObservationModels

The equations of motion presented in Eq. 1a–d comprise
the state model. However, for the implementation of EKF,
the differential form of equations of motion are transformed
into a discrete form using first-order Euler method [3].
In addition to the states, the dynamics of biases of
accelerometer and gyroscope are modeled as

ḃax = 0 (9a)

ḃay = 0 (9b)

ḃaz = 0 (9c)

ḃωx = 0 (9d)

ḃωy = 0 (9e)

ḃωz = 0 (9f)

The observation model comprises the PSD sensor
measurements, which give the directions of the light sources
in the body-axis frame of reference. An illustration is
provided in Fig. 2. To derive the observation model, let us
consider the locations of light source and aircraft center
of gravity in the inertial frame of reference as Xi

b and
Xi

cg , respectively. Corresponding locations in the body-

axis frame of reference can be denoted by Xb
b and Xb

cg ,
respectively. The vectors between the light source and
aircraft CG in the two frames of reference are related to each
other through the attitude matrix in Eq. 2a,b as

Xb
b − Xb

cg = Rb
i (Xi

b − Xi
cg) (10)

Let rb and vb be the vectors between the PSD sensor
and aircraft CG, and the light source and PSD sensor in the
body-axis frame of reference, respectively. By the triangle
law, all the vectors are related to each other as

Xb
b − Xb

cg = rb + vb (11)

Fig. 3 Illustration of working of
PSD sensor
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By substituting (10) in the above equation, and rearrang-
ing the terms, we get

vb = Rb
i (Xi

b − Xi
cg) − rb (12)

Normalization of the preceding equation leads to the
observation model

bnorm = vb

||vb|| = Rb
i (Xi

b − Xi
cg) − rb

||Rb
i (Xi

b − Xi
cg) − rb|| (13)

2.4 Extended Kalman Filter

Extended Kalman filter [28] is used in this paper for
aircraft state and biases estimation. This nonlinear filtering
technique can be used for state, parameter and dual
estimation problems. To implement EKF, the discretized
state-space form of aircraft equations of motion and
the observation model can be expressed together in a
generalized form as

xi+1 = f (xi , ui , wi ) (14a)

yi+1 = h(xi+1, vi+1) (14b)

where w and v are Gaussian noises with zero mean and
covariances Q and R, respectively; subscripts i and i + 1
indicate time; x, u and y are state, control and observation
vectors given as

x =[u, v, w, q1, q2, q3, q4, X, Y, Z, bax , bay , baz , bωx , bωy , bωz ]T
(15a)

u = [Fx, Fy, Fz]T (15b)

y = [b1, b2, b3]T (15c)

Let us define the following matrices

Fi = ∂f

∂x

∣∣∣∣
xi

(16a)

Hi = ∂h

∂x

∣∣∣∣
xi

(16b)

Bi = ∂f

∂w

∣∣∣∣
wi=0

(16c)

Di = ∂h

∂v

∣∣∣∣
vi=0

(16d)

The first step in the implementation of EKF comprises
a priori estimation of state and observations as

x−
i+1 = f (xi , ui , 0) (17a)

y−
i+1 = h

(
x−

i+1, 0
)

(17b)

In the second step, corrections are made to the a priori

estimation, which is defined as posteriori estimation

xi+1 = x−
i+1 + Ki+1

(
yi+1 − y−

i+1

)
(18)

where Ki+1 is the Kalman gain, which is given by

Ki+1 = Pxi+1yi+1
P −1

yi+1
(19)

for which

Pxi+1yi+1 = Px−
i+1

HT
i+1 (20a)

Pyi+1
= Hi+1Px−

i+1
HT

i+1 + Di+1Ri+1D
T
i+1 (20b)

The a priori and posteriori estimations for Px in the
Eq. 20a,b are given by

Px−
i+1

= FiPxi
F T

i + BiQiB
T
i (21a)

Pxi+1 = Px−
i+1

− Ki+1Pyi+1K
T
i+1 (21b)

3 Simulations

3.1 Reference Perching Trajectory

The nominal perching trajectory, which will be used later
for state estimation, is confined to the longitudinal plane of
motion only. It is generated by minimizing the trajectory
length of the maneuver [22], with level-flight trim and
perched states as initial and terminal boundary conditions,
respectively. The geometric model of the aircraft is taken
from Ref. [14], which has a conventional tractor-type fixed-
wing configuration. The aircraft’s mass and other relevant
properties are provided in Table 1. It should be noted that the
mass of the aircraft is increased from 0.8 to 1.2 kg to account
for the additional sensors weight. Aerodynamics of the
aircraft is modeled using the approach followed in Ref. [23],
where the steady-state aerodynamics is approximated using
nonlinear vortex correction method [11] and the unsteady
aerodynamics is approximated using Leishman’s state-
space model [12] of Wagner’s function [9]. The required
sectional aerodynamic data is taken from Ref. [14], where
it has been obtained from wind tunnel experiments. During
the maneuver, the aircraft state and control input variables
are subjected to the bounds presented in Table 2. The
computed flight-path, time histories of aircraft states and
control inputs of the reference optimal perching trajectory
are presented in Figs. 4, 5 and 6, respectively. However, the
time histories of the lateral state variables, v, ψ and φ, are
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Table 1 Reference aircraft’s mass and geometry properties

Quantity Value

Mass, m 1.2 kg

Thrust-to-weight, (T /W)max 0.2

Chord, c 0.25 m

Span, b 1 m

Wing surface area, Swing 0.25 m2

Tail surface area, Stail 0.04 m2

Moment of inertia, Iyy 0.1 kg.m2

CG position, xcg 0.0 m

Wing quarter-chord position, xc/4wing
–0.0625 m

Tail quarter-chord position, xc/4tail
–0.71 m

gravity, g 9.81 m/sec2

Air density, ρ 1.225 kg/m3

not presented as the maneuver is confined to the longitudinal
plane of motion only, and their values are zero.

3.2 SimulatedMeasurements and Observations

During real-time aircraft state estimation, the accelerometer,
gyroscope and PSD measurements are obtained from
their respective sensors. In our simulations, they are
determined from the reference optimal perching trajectory
presented in the previous subsection. To make the simulated
measurements realistic, they are corrupted by adding noises.

The accelerations and angular velocities in the body
frame-of-reference are determined by [8]

ax = {T − D cosα + L sinα}/m (22a)

ay = 0 (22b)

az = −{D sinα + L cosα}/m (22c)

Table 2 Bounds on state and control input variables

Variable (units) Lower limit Upper limit

Velocity in body X-axis, u (m/sec) 0 50

Velocity in body Z-axis, w (m/sec) 0 50

Pitch, θ (deg) −85 85

Pitch-rate, q (deg/s) – –

Downrange, x (m) –100 0

Altitude, h (m) –20 20

Trajectory length, s (m) 0 200

Elevator deflection, δe (deg) –30 30

Thrust, T (N) 0 2.352
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Fig. 4 Flight-path of the optimal perching trajectory
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and

ωx = 0 (23a)

ωy = q (23b)

ωz = 0 (23c)

The accelerations and angular velocities are added with
real noises obtained experimentally from a stationary IMU,
BMI055. The time histories of accelerations and angular
rates are presented in Figs. 7 and 8, respectively.

The PSD readings, which provide the directions of the
beacons, can be determined by Eq. 13. The locations of
three beacons, which are placed near the landing point, are
chosen as

Xi
b1 = (1.0m, −0.5m, −0.5m) (24a)

Xi
b2 = (1.0m, 0.0m, −0.5m) (24b)

Xi
b3 = (1.0m, 1.0m, −0.5m) (24c)

The location of the PSD sensor with respect to CG of the
aircraft is chosen as

rb = (0m, 0.5m, 0m) (25)

Based on the characteristics of the PSD sensor used
in [20], the PSD readings are corrupted with a Gaussian
noise of standard deviation 1/2500, and they are presented
in Fig. 9. It can be noticed that the actual and corrupted
sensor measurements are indistinguishable because of the
low noise of PSD sensors. To ensure that all the beacons
are in the field-of-view of the PSD sensor, the angle of
incidence of light is plotted for all the beacons and presented
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Fig. 7 Actual and corrupted accelerations

in Fig. 10. It can be seen that all the beacons are within 60◦
field-of-view, which is typical for most of the commercially
available lenses.
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Fig. 8 Actual and corrupted angular velocities

3.3 State Estimation, Results and Discussion

The state estimation is carried out by first perturbing the
initial state of the optimal perching trajectory presented in
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Fig. 9 Actual and corrupted normalized PSD readings

Figs. 4, 5 and 6. This is done by adding position, velocity
and quaternion with random errors of ±1 m, ±1 m/s and
±0.1, respectively. The biases are assumed to be zero. The
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Fig. 10 Angle of incidences

time-step in the state-space model is chosen as 0.02 s, which
results in an update frequency of 50Hz. The EKF is also run
at the same frequency. For the noisy sensor measurements

presented in Figs. 7, 8 and 9, covariance matrices Q and R

are

Q =
[
0.025 I3×3 O3×3

O3×3 0.004 ∗ π/180 I3×3

]2
(26)

R =
[

1

2500

]2
I9×9 (27)

where I and O are identity and null matrices of appropriate
dimensions specified in their subscripts.

The covariance matrix Px is initialized as

Px1 =

⎡
⎢⎢⎣

I6×6 O6×4 O6×3 O6×3

O4×6 0.1 I4×4 O4×3 O4×3

O3×6 O3×4 0.5I3×3 O3×3

O3×6 O3×4 O3×3 1e − 3I3×3

⎤
⎥⎥⎦

2

(28)

Once the initialization of the aircraft state and other
covariance matrices is done, the a priori estimation of
the aircraft state is carried out using the discretized state-
space model. The simulated accelerations and angular rates
required for the evaluation of the a priori state estimation
are obtained from Figs. 7 and 8, respectively. The a priori

state estimation is followed by the posteriori estimation,
which is carried out by using Eq. 18. The Kalman gain
required for the evaluation of the posteriori estimation is
determined from Eq. 19. The predicted PSD observations
are evaluated using (13), where Xb and rb are given
in Eqs. 25 and 24a–c, respectively. The measured PSD
observations are obtained from the plots presented in Fig. 9.
Before the evaluation of the next a priori state estimation,
the covariance matrices are updated using (20a,b) and
(21a,b), for which the Jacobians, F , H , D and B, defined
in Eq. 16a–d, are determined numerically. These steps are
repeated recursively until the end of the maneuver.

The time-histories of the errors of estimated position,
velocity, quaternion, Euler angles and biases are presented
in Fig. 11. The use of quaternion for the representation
of aircraft orientation is less intuitive. Hence, they are
transformed into Euler angles via Eq. 5a–c. The error
between actual and estimated quaternions, (Δϑ), is defined
as [4]

Δϑ = 2 cos−1 (δq) (29)

where δq is the quaternion product of actual and conjugate
of estimated quaternions given as

δq = qactual ⊗ q−1
estimated (30)

The time history of quaternion angle error is presented
in Fig. 12. It can be seen from Figs. 11 and 12 that
the errors of estimated states have reduced and eventually
converged close to zero. The translational state variables,
position and velocity, are able to achieve convergence in
around 2.0 seconds. The rotational state variables, Euler
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Fig. 11 Time histories of errors between estimated and actual aircraft states

angles, are able to achieve convergence in around 3.0
seconds. After the convergence, all the state errors remained
bounded. At the end of the maneuver, the errors in position,

velocity and Euler angles are less than 0.005 m, 0.005
m/s and 0.2 deg, respectively. Due to the short maneuver
time convergence of angular rate biases is not significantly
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Fig. 12 Time history of error between actual and estimated quaternion
angles

observable. The numerical simulations and convergence of
errors of all the aircraft states strongly support the proposed
vision-based navigation system for a perching aircraft,
especially in the outdoor environments. Compared with the
expensive image processing-based localization techniques,
the computational cost required for signal processing of
PSD measurements is negligible. This allows the state
estimation algorithms to run at significantly higher update
rates. As the control and state estimation algorithms run
in tandem with each other, a high update rate of state
estimation facilitates the control algorithms to also run at
higher update rates, which can lead to increased tracking
performance. The reference perching trajectory considered
for the simulations in this paper has a maneuver time of
around 5 s. Convergence of errors has been achieved within
around 1.5 s. If the maneuver time is short such that the
desired convergence could not be achieved, the navigation
system can be activated during the level-flight phase, prior
to the initialization of the maneuver. The evaluation of state
and observation models, and the implementation of EKF are
all computationally inexpensive. A high accuracy of state
estimation is achieved. Considering all these merits, the
proposed navigation system establishes itself as a potential
candidate for real-time application.

4 Conclusions

A vision-based navigation system, comprising accelerome-
ters, gyroscopes and a PSD sensor, has been proposed for
the estimation of aircraft state during a perching maneu-
ver. The proposed system has a PSD sensor mounted on
the aircraft that senses the directions of the light sources

placed near the landing point with high accuracy, and
the measurements are treated as observations in the state
estimation model. The performance of the proposed nav-
igation system is verified through numerical experiments,
where simulated measurements are determined from a refer-
ence optimal perching trajectory. State estimation is carried
out using EKF. Errors of all the estimated aircraft state
variables and biases have reduced considerably and then
remained bounded. A sub-centimeter, sub-centimeter per
second and sub-degree accuracy in position, velocity and
attitude, respectively, has been achieved by the end of the
maneuver. The use of lightweight PSD sensors, compu-
tationally inexpensive state and observation models, and
high accuracy of estimated states make the proposed nav-
igation system a potential candidate for real-time perching
application.
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