Advertisement

Journal of Intelligent & Robotic Systems

, Volume 72, Issue 3–4, pp 301–323 | Cite as

Different-Level Simultaneous Minimization of Joint-Velocity and Joint-Torque for Redundant Robot Manipulators

  • Yunong Zhang
  • Dongsheng Guo
  • Shugen Ma
Article

Abstract

In J Robot Syst 13(3):177–185 (1996), Ma proposed an efficient technique to stabilize local torque optimization solution of redundant manipulators, which prevents occurrence of high joint-velocity and guarantees the final joint-velocity to be near zero. To prevent the same problems, a different-level simultaneous minimization scheme is proposed in this paper for robotic redundancy resolution, which combines the minimum two-norm joint-velocity and joint-torque solutions via two weighting factors. Physical constraints such as joint-angle limits, joint-velocity limits and joint-acceleration limits are also taken into consideration in such a scheme-formulation. Moreover, the proposed different-level simultaneous minimization scheme is resolved at the joint-acceleration level and reformulated as a general quadratic program (QP). Computer-simulation results based on the PUMA560 robot manipulator performing different types of end-effector path-tracking tasks demonstrate the validity and advantage of the proposed different-level simultaneous minimization scheme. Furthermore, experimental verification conducted on a practical six-link planar robot manipulator substantiates the effectiveness and the physical realizability of the proposed scheme.

Keywords

Different-level Simultaneous minimization  Redundant robot manipulators Joint physical limits Quadratic program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  2. 2.
    Zhang, Y.: Analysis and design of recurrent neural networks and their applications to control and robotic systems. Ph.D. Thesis, Chinese University of Hong Kong, Hong Kong (2002)Google Scholar
  3. 3.
    Latash, M.L.: Control of Human Movement. Human Kinematics, Chicago (1993)Google Scholar
  4. 4.
    Cheng, F.-T., Chen, T.-H., Sun, Y.-Y.: Resolving manipulator redundancy under inequality constraints. IEEE Trans. Robot. Autom. 10(1), 65–71 (1994)CrossRefGoogle Scholar
  5. 5.
    Cheng, F.T., Sheu, R.J., Chen, T.H.: The improved compact QP method for resolving manipulator redundancy. IEEE Trans. Syst. Man Cybern. 25(11), 1521–1530 (1995)CrossRefGoogle Scholar
  6. 6.
    Cai, B., Zhang, Y.: Equivalence of velocity-level and acceleration-level redundancy-resolution of manipulators. Phys. Lett. A 373(38), 3450–3453 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    De Luca, A., Lanari, L., Oriolo, G.: Control of redundant robots on cyclic trajectories. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 500–506 (1992)Google Scholar
  8. 8.
    Ding H., Chan, S.P.: A real-time planning algorithm for obstacle avoidance of redundant robots. J. Intell. Robot. Syst. 16, 229–243 (1996)CrossRefGoogle Scholar
  9. 9.
    Janabi-Sharift, F., Wilson, W.J.: A fast approach for robot motion planning. J. Intell. Robot. Syst. 25, 187–212 (1999)CrossRefGoogle Scholar
  10. 10.
    Chung, C.Y., Lee, B.H., Kim, M.S., Lee, C.W.: Torque optimizing control with singularity-robustness for kinematically redundant robots. J. Intell. Robot. Syst. 28, 231–258 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Tian, L., Collins, C.: Motion planning for redundant manipulators using a floating point genetic algorithm. J. Intell. Robot. Syst. 38, 297–312 (2003)CrossRefGoogle Scholar
  12. 12.
    Mayorga R.V., Sanongboon, P.: An artificial neural network approach for inverse kinematics computation and singularities prevention of redundant manipulators. J. Intell. Robot. Syst. 44, 1–23 (2005)CrossRefGoogle Scholar
  13. 13.
    Daachi, B., Benallegue, A.: A neural network adaptive controller for end-effector tracking of redundant robot manipulators. J. Intell. Robot. Syst. 46, 245–262 (2006)CrossRefGoogle Scholar
  14. 14.
    Lin, C.-J., Lee, K.-S.: Contour tracking of a redundant robot using integral variable structure control with output feedback. J. Intell. Robot. Syst. 62, 241–270 (2011)CrossRefGoogle Scholar
  15. 15.
    Khoogar, A.R., Tehrani, A.K., Tajdari, M.: A dual neural network for kinematic control of redundant manipulators using input pattern switching. J. Intell. Robot. Syst. 63, 101–113 (2011)CrossRefGoogle Scholar
  16. 16.
    Granvagne, I.A., Walker, I.D.: On the structure of minimum effort solutions with application to kinematic redundancy resolution. IEEE Trans. Robot. Autom. 16(6), 855–863 (2000)CrossRefGoogle Scholar
  17. 17.
    Hollerbach, J.M., Suh, K.C.: Redundancy resolution of manipulators through torque optimization. IEEE J. Robot. Autom. 3(4), 308–316 (1987)CrossRefGoogle Scholar
  18. 18.
    Hou, Z.-G., Cheng, L., Tan, M.: Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans. Syst. Man Cybern., Part B 40(4), 1075–1087 (2010)CrossRefGoogle Scholar
  19. 19.
    Klein, C.A., Huang, C.H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern., Part B 13(3), 245–250 (1983)CrossRefGoogle Scholar
  20. 20.
    Kazerounian, K., Nedungadi, A.: Redundancy resolution of serial manipulators based on robot dynamics. Mech. Mach. Theory 23(4), 295–303 (1988)CrossRefGoogle Scholar
  21. 21.
    Kang, H.J., Freeman, R.A.: Joint torque optimization or redundant manipulators via the null space damping method. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 520–525 (1992)Google Scholar
  22. 22.
    Khoukhi, A., Baron, L., Balazinski, M.: A projected gradient augmented Lagrangian approach to multi-objective trajectory planning of redundant robots. Trans. Can. Soc. Mech. Eng. 31(4), 391–405 (2007)Google Scholar
  23. 23.
    Ma, S.: A balancing technique to stabilize local torque optimization solution of redundant manipulators. J. Robot. Syst. 13(3), 177–185 (1996)CrossRefMATHGoogle Scholar
  24. 24.
    Nedungadi, A., Kazerouinian, K.: A local solution with global characteristics for the joint torque optimization of a redundant manipulator. J. Robot. Syst. 6(5), 631–654 (1989)CrossRefGoogle Scholar
  25. 25.
    O’Neil, K.A.: Divergence of linear acceleration-based redundancy resolution schemes. IEEE Trans. Robot. Autom. 18(4), 625–631 (2002)CrossRefGoogle Scholar
  26. 26.
    Park, K.C., Chang, P.H., Kim, S.H.: The enhanced compact QP method for redundant manipulators using practical inequality constraints. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 107–114 (1998)Google Scholar
  27. 27.
    Roberts, R.G., Maciejewski, A.A.: Singularities, stable surfaces, and the repeatable behavior of kinematically redundant manipulators. Int. J. Rob. Res. 13(1), 70–81 (1994)CrossRefGoogle Scholar
  28. 28.
    Tang, W.S., Wang, J.: Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern., Part B 30(1), 120–128 (2000)CrossRefGoogle Scholar
  29. 29.
    Tan, J., Xi, N., Wang, Y.: A singularity-free motion control algorithm for robot manipulators—a hybrid system approach. Automatica 40(7), 1239–1245 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Rob. Res. 4(2), 3–9 (1985)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yin, F., Wang, Y.-N., Wei, S.-N.: Inverse kinematic solution for robot manipulator based on electromagnetism-like and modified DFP algorithms. Acta Auto. Sin. 37(1), 74–82 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Wang, J.: A dual neural network for constrained joint torque optimization of kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern., Part B 32(5), 654–662 (2002)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Wang, J., Xu, Y.: A dual neural network for bi-criteria kinematic control of redundant manipulators. IEEE Trans. Robot. Autom. 18(6), 923–931 (2002)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Wang, J., Xia, Y.: A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans. Neural Netw. 14(3), 658–667 (2003)CrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic programming based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst. Man Cybern., Part B 34(5), 2126–2132 (2004)CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Ma, S.: Minimum-energy redundancy resolution of robot manipulators unified by quadratic programming and its online solution. In: Proc. IEEE Int. Conf. Mech. Autom., pp. 3132–3137 (2007)Google Scholar
  37. 37.
    Zhang, Y., Lv, X., Li, Z., Yang, Z., Chen, K.: Repetitive motion planning of PA10 robot arm subject to joint physical limits and using LVI-based primal-dual neural network. Mechatronics 18(9), 475–485 (2008)CrossRefGoogle Scholar
  38. 38.
    Guo, D., Zhang, Y.: Different-level two-norm and infinity-norm minimization to remedy joint-torque instability/divergence for redundant robot manipulators. Robot. Auton. Syst. 60(6), 874–888 (2012)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Ma, W., Li, X.-D., Tan, H.-Z., Chen, K.: MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs. Neurocomputing 72(7-9), 1679–1687 (2009)CrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Jiang, D., Wang, J.: A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 13(5), 1053–1063 (2002)CrossRefGoogle Scholar
  41. 41.
    Zhang, Y., Ge, S.S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16(6), 1477–1490 (2005)CrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Guo, D.: Linear programming versus quadratic programming in robots’ repetitive redundancy resolution: a chattering phenomenon investigation. In: Proc. 4th IEEE Conf. Ind. Elec. Appl., pp. 2822–2827 (2009)Google Scholar
  43. 43.
    Zhang, Y., Wu, H., Guo, D., Xiao, L.: Effective parameter range for equivalence of velocity-level and acceleration-level redundancy resolution schemes. Phys. Lett. A 376(21), 1736–1739 (2012)CrossRefGoogle Scholar
  44. 44.
    Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley, Reading (1989)CrossRefMATHGoogle Scholar
  45. 45.
    Li, K., Zhang, Y.: Fault-tolerant motion planning and control of redundant manipulator. Control Eng. Pract. 20(3), 282–292 (2012)CrossRefGoogle Scholar
  46. 46.
    Li, K., Zhang, Y.: Design and implementation of a zero-initial-velocity self-motion scheme on a six-DOF planar robot manipulator. Ind. Rob. 39(4), 401–411 (2012)Google Scholar
  47. 47.
    Li, K., Zhang, Y.: State adjustment of redundant robot manipulator based on quadratic programming. Robotica 30(3) 477–489 (2012)CrossRefGoogle Scholar
  48. 48.
    The MathWorks Inc.: Optimization Toolbox for Use with MATLAB, version 2.3 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouChina
  2. 2.Department of RoboticsRitsumeikan UniversityShiga-kenJapan

Personalised recommendations