Advertisement

Journal of Electronic Testing

, Volume 24, Issue 1–3, pp 297–311 | Cite as

Reversible Gates and Testability of One Dimensional Arrays of Molecular QCA

  • X. Ma
  • J. Huang
  • C. Metra
  • F. Lombardi
Article

Abstract

An extensive literature exists on the mathematical characterization of reversible logic. However, the possible technological basis of this computing paradigm still remains unsolved. In this paper, quantum-dot cellular automata (QCA) is investigated for testable implementations of reversible logic. Two new reversible gates (referred to as QCA1 and QCA2) are proposed. These gates are compared (in terms of delay, area and logic synthesis) with other reversible gates (such as Toffoli and Fredkin) for QCA implementation. Due to the expected high error rates in nano-scale manufacturing, testing of nano devices, including QCA, has received considerable attention. The focus of this paper is on the testability of a one-dimensional array made of QCA reversible gates, because the bijective nature of reversible gates significantly facilitates testing of arrays. The investigation of testability relies on a fault model for molecular QCA that is based on a single missing/additional cell assumption. It is shown that C-testability of a 1D reversible QCA gate array can be guaranteed for single fault. Theory and circuit examples show that error masking can occur when multiple faults are considered.

Keywords

Reversible computing Testing QCA Emerging technologies 

References

  1. 1.
    Agrawal V (1981) An information theoretic approach to digital fault testing. IEEE Trans Comput 30:582–587CrossRefGoogle Scholar
  2. 2.
    Amlani I, Orlov A, Toth G, Lent C, Bernstein G, Snider G (1999) Digital logic gate using quantum-dot cellular automat. Science 284(5412):289–291, AprCrossRefGoogle Scholar
  3. 3.
    Antonelli DA, Chen DZ, Dysart TJ, Hu AB, Kahng XS, Kogge PM, Murphy RC, Niemier MT (2004) Quantum-dot cellular automata (qca) circuit partitioning: problem modeling and solutions. In: Proc. Design Automation Conference (DAC), pp 363–368Google Scholar
  4. 4.
    Bennett C (1973) Logic reversibilty of computation. IBM J Res Develop 17:525–532MATHMathSciNetGoogle Scholar
  5. 5.
    Chakraborty A (2005) Synthesis of reversible circuits for testing with universal test set and c-testability of reversible iterative logic arrays. In: Proc. 18th Intl. Conf. VLSI DesignGoogle Scholar
  6. 6.
    Compano R, Molenkamp L, Paul D (1999) Technology roadmap for nanoelectroincs. European Commission IST programme, Future and Emerging TechnologiesGoogle Scholar
  7. 7.
    Dimitrov V, Jullien G, Walus K (2002) Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In: IEEE Emerging Telecommunications Technologies Conference, pp 1–4, SeptemberGoogle Scholar
  8. 8.
    Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Frost S, Rodrigues A, Janiszewski A, Rausch R, Kogge P (2002) Memory in motion: a study of storage structures in qca. In: 1st Workshop on Non-Silicon Computation (NSC-1), held in conjunction with 8th Intl. Symp. on High Performance Computer Architecture (HPCA-8)Google Scholar
  10. 10.
    Hennessy K, Lent C (2001) Clocking of molecular quantum-dot cellular automata. J Vaccum Sci Technol 19(5):1752–1755CrossRefGoogle Scholar
  11. 11.
    Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Develop 5:183–191MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lent CS, Liu M, Lu Y (2007) Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. J Comput Electronics 17(16):4240–4251Google Scholar
  13. 13.
    Ma X, Huang J, Metra C, Lombardi F (2006) Reversible and testable circuits for molecular qca design, Northeastern University, ECE Department, Internal reportGoogle Scholar
  14. 14.
    Maslov D, Dueck G, Miller D (2004) Synthesis of Fredkin–Toffoli reversible networks. IEEE Transcation VLSI 13(6):765–769CrossRefGoogle Scholar
  15. 15.
    Muroga S (1971) Threshold logic and its applications. Wiley, New YorkMATHGoogle Scholar
  16. 16.
    Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge Univ. PressGoogle Scholar
  17. 17.
    Niemier M, Kogge P (1999) Logic-in-wire: using quantum dots to implement a microprocessor. In: International Conference on Electronics, Circuits, and Systems (ICECS ’99) 3:1211–1215Google Scholar
  18. 18.
    Niemier M, Rodrigues A, Kogge P (2002) A potentially implementable fpga for quantum dot cellular automata. In: 1st Workshop on Non-Silicon Computation (NSC-1), held in conjunction with 8th Intl. Symp. on High Performance Computer Architecture (HPCA-8)Google Scholar
  19. 19.
    Patel K, Hayes J, Markov I (2004) Fault testing for revers ible circuits. IEEE Trans on CAD 23(8):1220–1230Google Scholar
  20. 20.
    Reversible logic synthesis benchmarks page, http://www.cs.uvic.ca/∼dmaslov
  21. 21.
    Tahoori M, Momenzadeh M, Huang J, Lombardi F (2004) Testing of quantum cellular automata. IEEE Trans Nanotechnol 3(4):432–442CrossRefGoogle Scholar
  22. 22.
    Timler J, Lent, CS (2003) Maxwell’s demon and quantum dot cellular automata. J Appl Phys 94(2):1050–1060, JulCrossRefGoogle Scholar
  23. 23.
    Toffoli T (1980) Reversible computing. MIT laboratory for computer science. Technical Report MIT/LCS/TM-151, FebGoogle Scholar
  24. 24.
    Tougaw P, Lent C (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRefGoogle Scholar
  25. 25.
    Walus K, Budiman R, Jullien G (2002) Effects of morphological variations of self-assembled nanostructures on quantum-dot cellular automata (qca) circuits. In: Frontiers of integration, an international workshop on integrating nanotechnologiesGoogle Scholar
  26. 26.
    Walus K, Jullien G, Dimitrov V (2003) Computer arithmetic structures for quantum cellular automata. In: Proc. Asimolar ConferenceGoogle Scholar
  27. 27.
    Walus K, Vetteth A, Jullien G, Dimitrov V (2003) Ram design using quantum-dot cellular automata. In: NanoTechnology Conference, vol 2, pp 160–163Google Scholar
  28. 28.
    Wang W, Zhang R, Walus K, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.ECE DepartmentNortheastern UniversityBostonUSA
  2. 2.E.E. DepartmentUniversity of BolognaBolognaItaly

Personalised recommendations