Skip to main content

Advertisement

Log in

Self-consistent device simulation of a-Si p–i–n solar cells and energy resolution analyses of capture and emission processes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A self-consistent drift–diffusion simulator coupled with the Poisson equation is developed for amorphous Si p–i–n solar cells. By employing the principle of detailed balance, the present simulator takes into account the nonequilibrium distribution functions for the trap states in the mobility-gap in a self-consistent way so that the treatment of the capture–emission processes are expected to be physically more reliable. We then investigate the physical mechanism of the capture and emission processes under photoillumination: how the trap states in the mobility-gap affect the current–voltage characteristics under p–i–n structures. It is shown that the trap states near the band-edges have much stronger impact on both the device characteristics and the conversion efficiency of photovoltaic devices, compared to those in the middle of the mobility-gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In fact, the distribution function in high-doped regions slightly deviates from the equilibrium distribution, as shown in Fig. 9.

  2. The values of the parameter set of Case B are, however, similar to those employed in Ref. [16].

References

  1. Sorensen, B.: Renewable energy: a technical overview. Energy Policy 19(4), 386–391 (1991)

    Article  Google Scholar 

  2. Kurokawa, K.: Areal evolution of PV systems. Sol. Energy Mater. Sol. Cell 47, 27–36 (1997)

    Article  Google Scholar 

  3. Matsui, T., Kondo, M.: Advanced materials processing for high-efficiency thin-film silicon solar cells. Sol. Energy Mater. Sol. Cell 119, 156–162 (2013)

    Article  Google Scholar 

  4. Kamikawa-Shimizu, Y., Komaki, H., Yamada, A., Ishizuka, S., Iioka, M., Higuchi, H., Takano, M., Matsubara, K., Shibata, H., Niki, S.: Highly efficient Cu(In, Ga)S\({\rm e}_{2}\) thin-film submodule fabricated using a three-stage process. Appl. Phys. Express 6, 112303 (2013)

    Article  Google Scholar 

  5. Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaS\({\rm e}_{2}\) solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235–239 (2008)

    Article  Google Scholar 

  6. Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., Powalla, M.: New world record efficiency for Cu(In, Ga)S\({\rm e}_{2}\) thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  7. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4(1), 96–99 (2014)

    Article  Google Scholar 

  8. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)

  9. Simmons, J.G., Taylor, G.W.: Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B 4(2), 502–511 (1971)

    Article  Google Scholar 

  10. Taylor, G.W.: Comments on ‘Surface-state density by photovoltage measurements-II’. J. Phys. D 5, 52–54 (1972)

    Article  Google Scholar 

  11. Taylor, G.W., Simmons, J.G.: Basic equations for statistics, recombination processes, and photoconductivity in amorphous insulators and semiconductors. J. Noncryst. Solids 8–10, 940–946 (1972)

    Article  Google Scholar 

  12. Simmons, J.G., Taylor, G.W.: The theory of photoconductivity in defect insulators containing discrete trap levels. J. Phys. C 8, 3353–3359 (1975)

    Article  Google Scholar 

  13. Tiedje, T., Rose, A.: A physical interpretation of dispersive transport in disordered semiconductors. Solid State Commun. 37(1), 49–52 (1980)

    Article  Google Scholar 

  14. Hack, M., Shur, M.: Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells. J. Appl. Phys. 54, 5858–5863 (1983)

    Article  Google Scholar 

  15. Hack, M., Guha, S., Shur, M.: Photoconductivity and recombination in amorphous silicon alloys. Phys. Rev. B 30(12), 6991–6999 (1984)

    Article  Google Scholar 

  16. Hack, M., Shur, M.: Physics of amorphous silicon alloy p-i-n solar cells. J. Appl. Phys. 58, 997–1020 (1985)

    Article  Google Scholar 

  17. Hack, M., Shur, M.: Analysis of lightinduced degradation in amorphous silicon alloy p-i-n solar cells. J. Appl. Phys. 58, 1656–1661 (1985)

    Article  Google Scholar 

  18. Fantoni, A., Vieria, H., Martins, R.: Simulation of hydrogenated amorphous and microcrystalline silicon optoelectronic devices. Math. Comput. Simul. 49, 381–401 (1999)

    Article  Google Scholar 

  19. Fantoni, A., Vieria, H., Martins, R.: Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation. Sol. Energy Mater. Sol. Cell 73, 151–162 (2002)

    Article  Google Scholar 

  20. Scharfetter, H.K., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. ED–16(1), 64–77 (1969)

    Article  Google Scholar 

  21. Schropp, R.E.I., Zeman, M.: Amorphous and Microcrystalline Silicon Solar Cells. Kluwer, Norwell (1998)

    Book  Google Scholar 

  22. Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)

    Book  Google Scholar 

  23. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Book  Google Scholar 

  24. Turner, G.B., Schwartz, R.J., Park, J.W., Gary, J.L.: Recombination in thin film Si:H p-i-n solar cells. J. Noncryst. Solids 97&98, 1307–1310 (1987)

    Article  Google Scholar 

  25. Nawaz, M.: Computer analysis of thin-film amorphous silicon heterojunction solar cells. J. Phys. D 44, 145105(13pp) (2011)

    Article  Google Scholar 

  26. Walker, P.H., Uno, S., Mizuta, H.: Simulation study of the dependence of submicron polysilicon thin-film transistor output characteristics on grain boundary position. Jpn. J. Appl. Phys. 44(12), 8322–8328 (2005)

    Article  Google Scholar 

  27. Lin, A.S., Wang, W., Phillips, J.D.: Model for intermediate band solar cells incorporating carrier transport and recombination. J. Appl. Phys. 105, 064512 (2009)

    Article  Google Scholar 

  28. Lin, A.S., Phillips, J.D.: Drift-diffusion modeling for impurity photovoltaic devices. IEEE Trans. Electron Dev. 56(12), 3168–3174 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shuta Honda and Akiko Ueda for the discussion during the course of this study. This work was supported in part by the Ministry of Education, Science, Sports, and Culture under Grant-in-Aid for Scientific Research (B) (No. 15H03983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuma Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Yoshida, K. & Sano, N. Self-consistent device simulation of a-Si p–i–n solar cells and energy resolution analyses of capture and emission processes. J Comput Electron 15, 1554–1562 (2016). https://doi.org/10.1007/s10825-016-0915-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0915-1

Keywords

Navigation