Advertisement

Journal of Computational Electronics

, Volume 15, Issue 4, pp 1554–1562 | Cite as

Self-consistent device simulation of a-Si p–i–n solar cells and energy resolution analyses of capture and emission processes

  • Azuma Suzuki
  • Katsuhisa Yoshida
  • Nobuyuki Sano
Article
  • 103 Downloads

Abstract

A self-consistent drift–diffusion simulator coupled with the Poisson equation is developed for amorphous Si p–i–n solar cells. By employing the principle of detailed balance, the present simulator takes into account the nonequilibrium distribution functions for the trap states in the mobility-gap in a self-consistent way so that the treatment of the capture–emission processes are expected to be physically more reliable. We then investigate the physical mechanism of the capture and emission processes under photoillumination: how the trap states in the mobility-gap affect the current–voltage characteristics under p–i–n structures. It is shown that the trap states near the band-edges have much stronger impact on both the device characteristics and the conversion efficiency of photovoltaic devices, compared to those in the middle of the mobility-gap.

Keywords

Solar cell Device simulation Drift–diffusion a-Si Detailed balance p–i–n Diode 

Notes

Acknowledgments

The authors would like to thank Shuta Honda and Akiko Ueda for the discussion during the course of this study. This work was supported in part by the Ministry of Education, Science, Sports, and Culture under Grant-in-Aid for Scientific Research (B) (No. 15H03983).

References

  1. 1.
    Sorensen, B.: Renewable energy: a technical overview. Energy Policy 19(4), 386–391 (1991)CrossRefGoogle Scholar
  2. 2.
    Kurokawa, K.: Areal evolution of PV systems. Sol. Energy Mater. Sol. Cell 47, 27–36 (1997)CrossRefGoogle Scholar
  3. 3.
    Matsui, T., Kondo, M.: Advanced materials processing for high-efficiency thin-film silicon solar cells. Sol. Energy Mater. Sol. Cell 119, 156–162 (2013)CrossRefGoogle Scholar
  4. 4.
    Kamikawa-Shimizu, Y., Komaki, H., Yamada, A., Ishizuka, S., Iioka, M., Higuchi, H., Takano, M., Matsubara, K., Shibata, H., Niki, S.: Highly efficient Cu(In, Ga)S\({\rm e}_{2}\) thin-film submodule fabricated using a three-stage process. Appl. Phys. Express 6, 112303 (2013)CrossRefGoogle Scholar
  5. 5.
    Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaS\({\rm e}_{2}\) solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235–239 (2008)CrossRefGoogle Scholar
  6. 6.
    Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., Powalla, M.: New world record efficiency for Cu(In, Ga)S\({\rm e}_{2}\) thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)CrossRefGoogle Scholar
  7. 7.
    Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4(1), 96–99 (2014)CrossRefGoogle Scholar
  8. 8.
    Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)Google Scholar
  9. 9.
    Simmons, J.G., Taylor, G.W.: Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B 4(2), 502–511 (1971)CrossRefGoogle Scholar
  10. 10.
    Taylor, G.W.: Comments on ‘Surface-state density by photovoltage measurements-II’. J. Phys. D 5, 52–54 (1972)CrossRefGoogle Scholar
  11. 11.
    Taylor, G.W., Simmons, J.G.: Basic equations for statistics, recombination processes, and photoconductivity in amorphous insulators and semiconductors. J. Noncryst. Solids 8–10, 940–946 (1972)CrossRefGoogle Scholar
  12. 12.
    Simmons, J.G., Taylor, G.W.: The theory of photoconductivity in defect insulators containing discrete trap levels. J. Phys. C 8, 3353–3359 (1975)CrossRefGoogle Scholar
  13. 13.
    Tiedje, T., Rose, A.: A physical interpretation of dispersive transport in disordered semiconductors. Solid State Commun. 37(1), 49–52 (1980)CrossRefGoogle Scholar
  14. 14.
    Hack, M., Shur, M.: Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells. J. Appl. Phys. 54, 5858–5863 (1983)CrossRefGoogle Scholar
  15. 15.
    Hack, M., Guha, S., Shur, M.: Photoconductivity and recombination in amorphous silicon alloys. Phys. Rev. B 30(12), 6991–6999 (1984)CrossRefGoogle Scholar
  16. 16.
    Hack, M., Shur, M.: Physics of amorphous silicon alloy p-i-n solar cells. J. Appl. Phys. 58, 997–1020 (1985)CrossRefGoogle Scholar
  17. 17.
    Hack, M., Shur, M.: Analysis of lightinduced degradation in amorphous silicon alloy p-i-n solar cells. J. Appl. Phys. 58, 1656–1661 (1985)CrossRefGoogle Scholar
  18. 18.
    Fantoni, A., Vieria, H., Martins, R.: Simulation of hydrogenated amorphous and microcrystalline silicon optoelectronic devices. Math. Comput. Simul. 49, 381–401 (1999)CrossRefGoogle Scholar
  19. 19.
    Fantoni, A., Vieria, H., Martins, R.: Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation. Sol. Energy Mater. Sol. Cell 73, 151–162 (2002)CrossRefGoogle Scholar
  20. 20.
    Scharfetter, H.K., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. ED–16(1), 64–77 (1969)CrossRefGoogle Scholar
  21. 21.
    Schropp, R.E.I., Zeman, M.: Amorphous and Microcrystalline Silicon Solar Cells. Kluwer, Norwell (1998)CrossRefGoogle Scholar
  22. 22.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)CrossRefGoogle Scholar
  23. 23.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)CrossRefGoogle Scholar
  24. 24.
    Turner, G.B., Schwartz, R.J., Park, J.W., Gary, J.L.: Recombination in thin film Si:H p-i-n solar cells. J. Noncryst. Solids 97&98, 1307–1310 (1987)CrossRefGoogle Scholar
  25. 25.
    Nawaz, M.: Computer analysis of thin-film amorphous silicon heterojunction solar cells. J. Phys. D 44, 145105(13pp) (2011)CrossRefGoogle Scholar
  26. 26.
    Walker, P.H., Uno, S., Mizuta, H.: Simulation study of the dependence of submicron polysilicon thin-film transistor output characteristics on grain boundary position. Jpn. J. Appl. Phys. 44(12), 8322–8328 (2005)CrossRefGoogle Scholar
  27. 27.
    Lin, A.S., Wang, W., Phillips, J.D.: Model for intermediate band solar cells incorporating carrier transport and recombination. J. Appl. Phys. 105, 064512 (2009)CrossRefGoogle Scholar
  28. 28.
    Lin, A.S., Phillips, J.D.: Drift-diffusion modeling for impurity photovoltaic devices. IEEE Trans. Electron Dev. 56(12), 3168–3174 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of TsukubaTsukubaJapan
  2. 2.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations