Journal of Computational Electronics

, Volume 15, Issue 3, pp 809–819 | Cite as

Microscopic noise simulation of long- and short-channel nMOSFETs by a deterministic approach

  • Dino Ruić
  • Christoph Jungemann


We compute small-signal and noise quantities of nMOSFETs with different channel lengths with a fully self-consistent and deterministic Poisson, Schrödinger, and Boltzmann equation solver. We show how noise qualitatively changes due to short-channel effects and how noise is generated in the domain of ballistic transport. Furthermore, we inspect the suppression of noise due to the Pauli principle and due to the coupling to the fluctuations of the potential.


Deterministic Self-consistent Boltzmann Noise Nano MOSFET 


  1. 1.
    International Roadmap Committee: The international technology roadmap for semiconductors. (2013)Google Scholar
  2. 2.
    Huang, Q., Piazza, F., Orsatti, P., Ohguro, T.: The impact of scaling down to deep submicron on CMOS RF circuits. IEEE J. Solid-State Circuits 33(7), 1023–1036 (1998)CrossRefGoogle Scholar
  3. 3.
    Bonani, F., Ghione, G., Pinto, M.R., Smith, R.K.: An efficient approach to noise analysis through multidimensional physics-based models. IEEE Trans. Electron Devices 45(1), 261–269 (1998)CrossRefGoogle Scholar
  4. 4.
    Jungemann, C., Neinhüs, B., Nguyen, C.D., Scholten, A.J., Tiemeijer, L.F., Meinerzhagen, B.: Numerical modeling of RF noise in scaled MOS devices. Solid-State Electron. 50, 10–17 (2006)CrossRefGoogle Scholar
  5. 5.
    Esseni, D., Jungemann, C., Lorenz, J., Palestri, P., Sangiorgi, E., Selmi, L.: Technology computer aided design. In: Burghartz, J.N. (ed.) Guide to State-of-the-Art Electron Devices. Wiley, West Sussex (2013). ch. 8Google Scholar
  6. 6.
    Rengel, R., Martin, M.J., Gonzalez, T., Mateos, J., Pardo, D., Dambrine, G., Raskin, J.-P., Danneville, F.: A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs. IEEE Trans. Electron Devices 53(3), 523–532 (2006)CrossRefGoogle Scholar
  7. 7.
    Jungemann, C., Neinhüs, B., Decker, S., Meinerzhagen, B.: Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II—Results. IEEE Trans. Electron Devices 49(7), 1258–1264 (2002)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, T., Mateos, J., Martin-Martinez, M.J., Perez, S., Rengel, R., Vasallo, B.G., Pardo, D.: Monte Carlo simulation of noise in electronic devices: limitations and perspectives. Proceedings of the 3rd International Conference on Unsolved Problems of Noise, pp. 496–503 (2003)Google Scholar
  9. 9.
    Jungemann, C.: A deterministic approach to RF noise in silicon devices based on the Langevin–Boltzmann equation. IEEE Trans. Electron Devices 54(5), 1185–1192 (2007)CrossRefGoogle Scholar
  10. 10.
    Hong, S.-M., Pham, A.T., Jungemann, C.: Deterministic solvers for the Boltzmann transport equation. In: Selberherr, S. (ed.) Computational Microelectronics. Springer, Wien/New York (2011)Google Scholar
  11. 11.
    Kogan, S.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge/New York/Melbourne (1996)CrossRefGoogle Scholar
  12. 12.
    Paasch, G., Übensee, H.: A modified local density approximation—electron density in inversion layers. Phys. Status Solidi B 113, 165–178 (1982)CrossRefGoogle Scholar
  13. 13.
    Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54, 1156–1164 (2007)CrossRefGoogle Scholar
  14. 14.
    Ruić, D., Jungemann, C.: Numerical aspects of noise simulation in MOSFETs by a Langevin–Boltzmann solver. J. Comput. Electron. 14(1), 21–36 (2015). doi: 10.1007/s10825-014-0642-4 CrossRefGoogle Scholar
  15. 15.
    Ruić, D., Jungemann, C.: Small signal and microscopic noise simulation of an nMOSFET by a self-consistent, semi-classical and deterministic approach. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 20–23. IEEE (2015)Google Scholar
  16. 16.
    Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors. Semi-Classical Transport and Applications. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  17. 17.
    Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101(3), 944–962 (1956)CrossRefMATHGoogle Scholar
  18. 18.
    Gnudi, A., Ventura, D., Baccarani, G., Odeh, F.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36(4), 575–581 (1993)CrossRefGoogle Scholar
  19. 19.
    Prange, R.E., Nee, T.W.: Quantum spectroscopy of the low-field oscillations in the surface impedance. Phys. Rev. 168, 779–785 (1968)CrossRefGoogle Scholar
  20. 20.
    Kosina, H.: A method to reduce small-angle scattering in Monte Carlo device analysis. IEEE Trans. Electron Devices 46(6), 1196–1200 (1999)CrossRefGoogle Scholar
  21. 21.
    Klaassen, F.M., Prins, J.: Thermal noise of MOS transistors. Philips Res. Rep. 22, 505–514 (1967)Google Scholar
  22. 22.
    van der Ziel, A.: Noise in Solid State Devices and Circuits. Wiley, New York (1986)Google Scholar
  23. 23.
    Smit, G., Scholten, A., Pijper, R., Tiemeijer, L., van der Toorn, R., Klaassen, D.: RF-noise modeling in advanced CMOS technologies. IEEE Trans. Electron Devices 61(2), 245–254 (2014)CrossRefGoogle Scholar
  24. 24.
    van der Ziel, A.: Gate noise in field effect transistors at moderately high frequencies. Proc. IEEE 51(3), 461–467 (1963)CrossRefGoogle Scholar
  25. 25.
    Oh, T.-Y., Jungemann, C., Dutton, R.W.: Hydrodynamic simulation of RF noise in deep-submicron MOSFETs. In: SISPAD’03, pp. 87–90. Boston (2003)Google Scholar
  26. 26.
    Iannaccone, G.: Analytical and numerical investigation of noise in nanoscale ballistic field effect transistors. J. Comput. Electron. 3, 199–202 (2004)CrossRefGoogle Scholar
  27. 27.
    Betti, A., Fiori, G., Iannaccone, G.: Shot noise suppression in quasi-one-dimensional field-effect transistors. IEEE Trans. Electron Devices 56(9), 2137–2143 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations