Skip to main content
Log in

Microscopic noise simulation of long- and short-channel nMOSFETs by a deterministic approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We compute small-signal and noise quantities of nMOSFETs with different channel lengths with a fully self-consistent and deterministic Poisson, Schrödinger, and Boltzmann equation solver. We show how noise qualitatively changes due to short-channel effects and how noise is generated in the domain of ballistic transport. Furthermore, we inspect the suppression of noise due to the Pauli principle and due to the coupling to the fluctuations of the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. This is possible because 1 / f noise is not considered in this work.

  2. Due to the H-transformation all small-signal results contain bias-dependent variations which vanish for zero energy spacing of the H-grid [14].

  3. Since all considered scattering processes are charge conserving, a fluctuation cannot actually create a difference in the total charge. But a scattering process is synonymous to a creation of charge at one energy and an annihilation at another. The zeroth harmonic of the Green’s function of the drain terminal current expresses how such a creation of charge in a scattering process influences the drain terminal current.

References

  1. International Roadmap Committee: The international technology roadmap for semiconductors. public.itrs.net (2013)

  2. Huang, Q., Piazza, F., Orsatti, P., Ohguro, T.: The impact of scaling down to deep submicron on CMOS RF circuits. IEEE J. Solid-State Circuits 33(7), 1023–1036 (1998)

    Article  Google Scholar 

  3. Bonani, F., Ghione, G., Pinto, M.R., Smith, R.K.: An efficient approach to noise analysis through multidimensional physics-based models. IEEE Trans. Electron Devices 45(1), 261–269 (1998)

    Article  Google Scholar 

  4. Jungemann, C., Neinhüs, B., Nguyen, C.D., Scholten, A.J., Tiemeijer, L.F., Meinerzhagen, B.: Numerical modeling of RF noise in scaled MOS devices. Solid-State Electron. 50, 10–17 (2006)

    Article  Google Scholar 

  5. Esseni, D., Jungemann, C., Lorenz, J., Palestri, P., Sangiorgi, E., Selmi, L.: Technology computer aided design. In: Burghartz, J.N. (ed.) Guide to State-of-the-Art Electron Devices. Wiley, West Sussex (2013). ch. 8

  6. Rengel, R., Martin, M.J., Gonzalez, T., Mateos, J., Pardo, D., Dambrine, G., Raskin, J.-P., Danneville, F.: A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs. IEEE Trans. Electron Devices 53(3), 523–532 (2006)

    Article  Google Scholar 

  7. Jungemann, C., Neinhüs, B., Decker, S., Meinerzhagen, B.: Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II—Results. IEEE Trans. Electron Devices 49(7), 1258–1264 (2002)

    Article  Google Scholar 

  8. Gonzalez, T., Mateos, J., Martin-Martinez, M.J., Perez, S., Rengel, R., Vasallo, B.G., Pardo, D.: Monte Carlo simulation of noise in electronic devices: limitations and perspectives. Proceedings of the 3rd International Conference on Unsolved Problems of Noise, pp. 496–503 (2003)

  9. Jungemann, C.: A deterministic approach to RF noise in silicon devices based on the Langevin–Boltzmann equation. IEEE Trans. Electron Devices 54(5), 1185–1192 (2007)

    Article  Google Scholar 

  10. Hong, S.-M., Pham, A.T., Jungemann, C.: Deterministic solvers for the Boltzmann transport equation. In: Selberherr, S. (ed.) Computational Microelectronics. Springer, Wien/New York (2011)

    Google Scholar 

  11. Kogan, S.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge/New York/Melbourne (1996)

    Book  Google Scholar 

  12. Paasch, G., Übensee, H.: A modified local density approximation—electron density in inversion layers. Phys. Status Solidi B 113, 165–178 (1982)

    Article  Google Scholar 

  13. Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54, 1156–1164 (2007)

    Article  Google Scholar 

  14. Ruić, D., Jungemann, C.: Numerical aspects of noise simulation in MOSFETs by a Langevin–Boltzmann solver. J. Comput. Electron. 14(1), 21–36 (2015). doi:10.1007/s10825-014-0642-4

    Article  Google Scholar 

  15. Ruić, D., Jungemann, C.: Small signal and microscopic noise simulation of an nMOSFET by a self-consistent, semi-classical and deterministic approach. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 20–23. IEEE (2015)

  16. Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors. Semi-Classical Transport and Applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101(3), 944–962 (1956)

    Article  MATH  Google Scholar 

  18. Gnudi, A., Ventura, D., Baccarani, G., Odeh, F.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36(4), 575–581 (1993)

    Article  Google Scholar 

  19. Prange, R.E., Nee, T.W.: Quantum spectroscopy of the low-field oscillations in the surface impedance. Phys. Rev. 168, 779–785 (1968)

    Article  Google Scholar 

  20. Kosina, H.: A method to reduce small-angle scattering in Monte Carlo device analysis. IEEE Trans. Electron Devices 46(6), 1196–1200 (1999)

    Article  Google Scholar 

  21. Klaassen, F.M., Prins, J.: Thermal noise of MOS transistors. Philips Res. Rep. 22, 505–514 (1967)

    Google Scholar 

  22. van der Ziel, A.: Noise in Solid State Devices and Circuits. Wiley, New York (1986)

    Google Scholar 

  23. Smit, G., Scholten, A., Pijper, R., Tiemeijer, L., van der Toorn, R., Klaassen, D.: RF-noise modeling in advanced CMOS technologies. IEEE Trans. Electron Devices 61(2), 245–254 (2014)

    Article  Google Scholar 

  24. van der Ziel, A.: Gate noise in field effect transistors at moderately high frequencies. Proc. IEEE 51(3), 461–467 (1963)

    Article  Google Scholar 

  25. Oh, T.-Y., Jungemann, C., Dutton, R.W.: Hydrodynamic simulation of RF noise in deep-submicron MOSFETs. In: SISPAD’03, pp. 87–90. Boston (2003)

  26. Iannaccone, G.: Analytical and numerical investigation of noise in nanoscale ballistic field effect transistors. J. Comput. Electron. 3, 199–202 (2004)

    Article  Google Scholar 

  27. Betti, A., Fiori, G., Iannaccone, G.: Shot noise suppression in quasi-one-dimensional field-effect transistors. IEEE Trans. Electron Devices 56(9), 2137–2143 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Ruić.

Additional information

Funding by the Deutsche Forschungsgemeinschaft (Ref.No.: JU406/9-1, ME1590/7-1) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruić, D., Jungemann, C. Microscopic noise simulation of long- and short-channel nMOSFETs by a deterministic approach. J Comput Electron 15, 809–819 (2016). https://doi.org/10.1007/s10825-016-0840-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0840-3

Keywords

Navigation