Skip to main content

Advertisement

Log in

Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

This review is a response to the Fellows Forum on testing 2% oxygen for best culture of human blastocysts (J Ass Reprod Gen 34:303–8, 1; J Ass Reprod Gen 34:309–14, 2) prior to embryo transfer. It is a general analysis in support of the position that an understanding of stem cell physiology and responses to oxygen are necessary for optimization of blastocyst culture in IVF and to enhance reproductive success in fertile women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaser DJ. On developing a thesis for reproductive endocrinology and infertility fellowship: a case study of ultra-low (2%) oxygen tension for extended culture of human embryos. J Assist Reprod Genet. 2017;34:303–8.

    Article  PubMed  Google Scholar 

  2. Morin SJ. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? J Assist Reprod Genet. 2017;34:309–14.

    Article  PubMed  Google Scholar 

  3. Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;7:CD008950.

    Google Scholar 

  4. Gomes Sobrinho DB, Oliveira JBA, Petersen CG, Mauri AL, Silva LFI, Massaro FC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7:150–61.

    Article  CAS  PubMed  Google Scholar 

  6. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80:283–5.

    CAS  PubMed  Google Scholar 

  8. Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99

  10. Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF. The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil Steril. 1976;27:304–9.

    Article  CAS  PubMed  Google Scholar 

  11. Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol. 2015;843:77–128.

    Article  CAS  PubMed  Google Scholar 

  12. McLaren A, Snow ML. Embryogenesis in mammals. Amsterdam. New York: Elsevier; 1976.

    Google Scholar 

  13. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports. 2016;6:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010;6:468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998;282:2072–5.

    Article  CAS  PubMed  Google Scholar 

  16. Chai N, Patel Y, Jacobson K, McMahon J, McMahon A, Rappolee DA. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev Biol. 1998;198:105–15.

    Article  CAS  PubMed  Google Scholar 

  17. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9:285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rich PR. The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans. 2003;31:1095–105.

    Article  CAS  PubMed  Google Scholar 

  19. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.

    Article  CAS  PubMed  Google Scholar 

  21. Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? BioEssays. 2015;37:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Houghton FD. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation. 2006;74:11–8.

    Article  CAS  PubMed  Google Scholar 

  23. Van Blerkom J, Cox H, Davis P. Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: possible origins and developmental significance of differential DeltaPsim. Reproduction. 2006;131:961–76.

    Article  PubMed  Google Scholar 

  24. Xie Y, Zhou S, Jiang Z, Dai J, Puscheck EE, Lee I, et al. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res. 2014;13:478–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Westfall SD, Sachdev S, Das P, Hearne LB, Hannink M, Roberts RM, et al. Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev. 2008;17:869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79:311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gott AL, Hardy K, Winston RM, Leese HJ. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5:104–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Bolnick A, Shamir A, Abdulhasan M, Li Q, Parker GC, et al. Blastocyst-derived stem cell populations under stress: impact of nutrition and metabolism on stem cell potency loss and miscarriage. Stem Cell Rev Rep. 2017:1–11.

  30. Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.

    Article  CAS  PubMed  Google Scholar 

  31. Seeber BE. What serial hCG can tell you, and cannot tell you, about an early pregnancy. Fertil Steril. 2012;98:1074–7.

    Article  CAS  PubMed  Google Scholar 

  32. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod BioMed Online. 2001;3:25–9.

    Article  PubMed  Google Scholar 

  33. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375:54–64.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou S, Xie Y, Puscheck EE, Rappolee DA. Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta. 2011;32:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102:4783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rappolee DA. Impact of transient stress and stress enzymes on development. Dev Biol. 2007;304:1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev. 2014;23:3049–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Awonuga AO, Zhong W, Abdallah ME, Slater JA, Zhou SC, Xie YF, et al. Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner. Mol Reprod Dev. 2011;78:519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, Arenas-Hernandez M, Gomez-Lopez N, Dai J, Parker GC, Puscheck EE, et al. Hypoxic stress forces irreversible differentiation of a majority of mouse trophoblast stem cells despite FGF4. Biol Reprod. 2016;95:110.

    Article  PubMed  Google Scholar 

  40. Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, Wang F, Rappolee DA. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril. 2005;83(Suppl 1):1144–54.

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty D, Cui W, Rosario GX, Scott RL, Dhakal P, Renaud SJ et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci USA 2016.

  42. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod BioMed Online. 2010;21:402–10.

    Article  CAS  PubMed  Google Scholar 

  43. Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M, et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 2003;13:1863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009;16:45–58.

    Article  CAS  PubMed  Google Scholar 

  45. Herbert M, Wolstenholme J, Murdoch AP, Butler TJ. Mitotic activity during preimplantation development of human embryos. J Reprod Fertil. 1995;103:209–14.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Departure from optimal O2 level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. J Reprod Dev. 2016;

  47. Li Q, Yang Y, Louden E, Puscheck E, Rappolee D. High throughput screens for embryonic stem cells; stress-forced potency-stemness loss enables toxicological assays. In: Faqi A, editor. Methods. In Toxicology and Pharmacology: Springer; 2016.

    Google Scholar 

  48. Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, et al. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet. 2016;33:1027–39.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA. Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells [corrected]. Stem Cells Dev. 2013;22:1564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, et al. Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction. 2010;140:921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie Y, Abdallah ME, Awonuga AO, Slater JA, Puscheck EE, Rappolee DA. Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Mol Reprod Dev. 2010;77:533–9.

    Article  CAS  PubMed  Google Scholar 

  52. Bolnick A, Kilburn B, Abdulhasan M, Shamir A, Dai J, Puscheck E et al. 2-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and potency/stemness by commonly used drugs, a diet supplement and stress. J Assist Reprod Genet 2017; to be submittted.

  53. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25:613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Departure from optimal O2 level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. J Reprod Dev. 2017;63:87–94.

    Article  PubMed  Google Scholar 

  55. Yang Y, Xu Y, Ding C, Khoudja RY, Lin M, Awonuga AO, et al. Comparison of 2, 5, and 20% O2 on the development of post-thaw human embryos. J Assist Reprod Genet. 2016;33:919–27.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, et al. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol. 2006;572:87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen B, Longtine MS, Nelson DM. Pericellular oxygen concentration of cultured primary human trophoblasts. Placenta. 2013;34:106–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lee MS, Lee YS, Lee HH, Song HY. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development. J Occup Med Toxicol. 2012;7:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Borman ED, Foster WG, Greenacre MKE, Muir CC, deCatanzaro D. Stress lowers the threshold dose at which bisphenol A disrupts blastocyst implantation, in conjunction with decreased uterine closure and E-cadherin. Chem Biol Interact. 2015;237:87–95.

    Article  CAS  PubMed  Google Scholar 

  60. Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol. 2001;184:998–1003.

    Article  CAS  PubMed  Google Scholar 

  61. Genbacev O, Joslin R, Damsky CH, Polliotti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97:540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kilburn BA, Wang J, Duniec-Dmuchowski ZM, Leach RE, Romero R, Armant DR. Extracellular matrix composition and hypoxia regulate the expression of HLA-G and integrins in a human trophoblast cell line. Biol Reprod. 2000;62:739–47.

    Article  CAS  PubMed  Google Scholar 

  63. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest. 2000;105:577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11:342–52.

    Article  CAS  PubMed  Google Scholar 

  67. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool. 1978;206:73–80.

    Article  CAS  PubMed  Google Scholar 

  68. Pabon JE Jr, Findley WE, Gibbons WE. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril. 1989;51:896–900.

    Article  PubMed  Google Scholar 

  69. Umaoka Y, Noda Y, Narimoto K, Mori T. Effects of oxygen toxicity on early development of mouse embryos. Mol Reprod Dev. 1992;31:28–33.

    Article  CAS  PubMed  Google Scholar 

  70. Li J, Foote RH. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J Reprod Fertil. 1993;98:163–7.

    Article  CAS  PubMed  Google Scholar 

  71. Orsi NM, Leese HJ. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev. 2001;59:44–53.

    Article  CAS  PubMed  Google Scholar 

  72. Banwell KM, Lane M, Russell DL, Kind KL, Thompson JG. Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod. 2007;22:2768–75.

    Article  CAS  PubMed  Google Scholar 

  73. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118:47–55.

    Article  CAS  PubMed  Google Scholar 

  74. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    Article  CAS  PubMed  Google Scholar 

  75. Dumoulin JC, Meijers CJ, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod. 1999;14:465–9.

    Article  CAS  PubMed  Google Scholar 

  76. Dumoulin JC, Vanvuchelen RC, Land JA, Pieters MH, Geraedts JP, Evers JL. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil Steril. 1995;63:115–9.

    Article  CAS  PubMed  Google Scholar 

  77. Harlow GM, Quinn P. Foetal and placental growth in the mouse after pre-implantation development in vitro under oxygen concentrations of 5 and 20%. Aust J Biol Sci. 1979;32:363–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kind KL, Collett RA, Harvey AJ, Thompson JG. Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev. 2005;70:37–44.

    Article  CAS  PubMed  Google Scholar 

  79. Harvey AJ, Kind KL, Thompson JG. Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol Reprod. 2007;77:93–101.

    Article  CAS  PubMed  Google Scholar 

  80. Kurosawa H, Utsunomiya H, Shiga N, Takahashi A, Ihara M, Ishibashi M, et al. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption. Hum Reprod. 2016;31:2321–30.

    Article  PubMed  Google Scholar 

  81. Zhang YS, Ribas J, Nadhman A, Aleman J, Selimovic S, Lesher-Perez SC, et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab Chip. 2015;15:3661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105:571–87.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Quanwen Li, Dr. Ali Faqi, Dr. Shu Takayama, and members of our lab for the analysis and comments on the manuscript. This research was supported by grants to DAR from NIH (1R03HD061431 02), the Kam Moghissi chair (EEP), and from the Office of the Vice President for Research at Wayne State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Rappolee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolnick, A., Awonuga, A., Yang, Y. et al. Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. J Assist Reprod Genet 34, 1251–1259 (2017). https://doi.org/10.1007/s10815-017-0971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0971-x

Keywords

Navigation