Skip to main content
Log in

Comparison of two different modes of UV-B irradiation on synthesis of some cellular substances in the cyanobacterium Synechocystis sp. PCC6803

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Two different modes of UV-B irradiation of the cyanobacterium Synechocystis sp. PCC 6803 are compared: turbidostatic control and additional physiostatic control. Under turbidostatic control, the cells were exposed to different constant UV-B irradiances, whereas under physiostatic control, an electronic control loop modulated UV-B irradiance in such a way that photosynthetic efficiency ϕ PSII was kept constant at a fixed set point. The UV-B-induced stimulation of the synthesis of pigments, α-tocopherol, and the antioxidative potential of methanolic soluble components of Synechocystis showed significant differences depending on the mode of irradiation, even though the overall doses were equal. For example, compared to the initial values, the concentrations of myxoxanthophyll and zeaxanthin increased to 226–244% and 453% upon constant UV-B irradiation in turbidostatic processes, whereas maxima of 600% and 740% were reached in turbidostatic process with additional physiostatic control. The α-tocopherol concentration increased under constant UV-B irradiances, up to a maximum of 150%. Under physiological control, however, maximum increases of 390% over the initial values were measured. Furthermore, a reaction scheme is given explaining the higher yield under physiostatic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araoz R, Häder DP (1997) Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbiol Ecol 23:301–313

    Article  CAS  Google Scholar 

  • Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    Article  CAS  PubMed  Google Scholar 

  • Bode HW (1964) Network analysis and feedback amplifier design. Von Nordstrand Co, New York

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Bouchard JN, Roy S, Campbell DA (2006) UV-B effects on the photosystem Il-D1 protein of phytoplankton and natural phytoplankton communities. Photochem Photobiol 82:936–951

    Article  CAS  PubMed  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Extraction of benthic microalgal pigments for HPLC analyses. Mar Ecol Prog Ser 204:293–297

    Article  CAS  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Campbell D, Eriksson MJ, Öquist G, Gustafsson P, Clarke AK (1998) The Cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci 95:364–369

    Article  CAS  PubMed  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78

    Article  Google Scholar 

  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 1543:434–455

    CAS  PubMed  Google Scholar 

  • Cifuentes AS, Gonzalez MA, Vargas S, Hoeneisen M, Gonzalez N (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36:343–357

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z (ed.) (1999) Chemicals in microalgae. Taylor and Francis Ltd, London, p 419

    Google Scholar 

  • Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    CAS  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationship in phytoplankton. Limnol Oceanogr 30:311–321

    Article  CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1934) Statistical methods for research workers, 5th edn. Oliver and Boyd, Edinburgh (Scotland)

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gomez P, Barriga A, Cifuentes AS, Gonzalez MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol Res 36:185–192

    Article  CAS  PubMed  Google Scholar 

  • Götz T, Windhövel U, Böger P, Sandmann G (1999) Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC 7942. Plant Physiol 120:599–604

    Article  PubMed  Google Scholar 

  • Grobbelaar JU (2008) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol. doi:10.1007/s10811-008-9365-x

    Google Scholar 

  • Hansen UP (1978) Do the light-induced changes in the membrane potential of Nitella reflect the feed-back regulation of a cytoplasmic parameter? J Membrane Biol 41:197–224

    Article  Google Scholar 

  • Havaux M, Lütz C, Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310

    Article  CAS  PubMed  Google Scholar 

  • He YY, Häder DP (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  PubMed  Google Scholar 

  • He YY, Klisch M, Häder DP (2002) Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochem Photobiol 76:188–196

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Vass I (1996) UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci 115:251–260

    Article  CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Polle JEW, Lee HK, Hyun SM, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174

    CAS  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  Google Scholar 

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Kuepper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787:155–167

    Google Scholar 

  • Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of teresstial cyanobacteria; response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375

    Article  Google Scholar 

  • Lao K, Glazer AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc Natl Acad Sci 93:5258–5263

    Article  CAS  PubMed  Google Scholar 

  • Lippemeier S, Frampton D, Blackburn S, Geier S, Negri A (2003) Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. J Phycol 39:320–331

    Article  CAS  Google Scholar 

  • Mantoura RFC, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314

    Article  CAS  Google Scholar 

  • Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2005) A photobioreactor system for computer controlled cultivation of microalgae. J Appl Phycol 17:535–549

    Article  CAS  Google Scholar 

  • Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors 7:2080–2095

    Article  CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HE, van de Meene AML, Roberson RW, Vermaas WFJ (2005) Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis sp. PCC 6803. J Bacteriol 187:6883–6892

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Advanc 20:491–515

    Article  CAS  Google Scholar 

  • Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 15:263–267

    Article  CAS  Google Scholar 

  • Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci 94:14162–14167

    Article  CAS  PubMed  Google Scholar 

  • Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 43:89–109

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Richaud C, Zabulon G, Joder A, Thomas JC (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (ed.) (2004) Microalgal culture. Blackwell Science, Oxford, p 566

    Google Scholar 

  • Riethmann H, Bullerjahn G, Reddy KJ, Sherman LA (1988) Regulation of cyanobacterial pigment-protein composition and organization by environmental factors. Photosyn Res 18:133–161

    Article  Google Scholar 

  • Rippert P, Scimeni C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:92–100

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin-a review. Comp Rev Food Sci Food Safe 7:29–49

    Article  CAS  Google Scholar 

  • Schäfer L, Sandmann M, Woitsch S, Sandmann G (2006) Coordinate up-regulation of carotenoid biosynthesis as a response to light stress in Synechococcus PCC 7942. Plant Cell Environ 29:1349–1356

    Article  PubMed  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    Article  CAS  Google Scholar 

  • Six C, Joubin L, Partensky F, Holtzendorff J, Garczarek L (2007) UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp. WH8102. Photosynth Res 92:75–86

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial application of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Steiger S, Schäfer L, Sandmann G (1999) High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium. Synechocystis PCC 6803. J Photochem Photobiol 52:14–18

    Article  CAS  Google Scholar 

  • Sundby C, Chow WS, Anderson JM (1993) Effects on photosystem II, photoinhibition, and plant performance of the spontaneous mutation of serine-264 in the photosystem II reaction center D1 protein in triazine-resistent Brassica napus L. Plant Physiol 103:105–113

    CAS  PubMed  Google Scholar 

  • Tichy M, Vermaas W (1999) In vivo role of catalase-peroxidase in Synechocystis sp. PCC 6803. J Bacteriol 181:1875–1882

    CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signalling. Trends Plant Sci 14:219–228

    Article  PubMed  Google Scholar 

  • Valentin HE, Qi Q (2005) Biotechnological production and application of vitamin E: current state and prospects. Appl Microbiol Biotechnol 68:436–444

    Article  CAS  PubMed  Google Scholar 

  • Vismara R, Vestri S, Kusmic C, Barsanti L, Gualtieri P (2003) Natural vitamin E enrichment of Artemia salina fed freshwater and marine microalgae. J Appl Phycol 15:75–80

    Article  CAS  Google Scholar 

  • Wada H, Murata N (1989) Synechocystis PCC 6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30:971–978

    CAS  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Young AJ, Phillip D, Ruban AV, Horton P, Frank HA (1997) The xanthophyll cycle and carotenoid-mediated of excess excitation energy in dissipation photosynthesis. Pure Appl Chem 69:2125–2130

    Article  CAS  Google Scholar 

  • Zhang WJ, Björn LO (2009) The effect of ultraviolet radiation on the accumulation of medical compounds in plants. Filoterapia 80:207–218

    Article  CAS  Google Scholar 

  • Zolla L, Bianchetti M (2001) High-performance liquid chromatography coupled on-line with electrospray ionization mass spectrometry for the simultaneous separation and identification of the Synechocystis PCC 6803 phycobilisome proteins. J Chromat 912:269–279

    Article  CAS  Google Scholar 

  • Zolla L, Bianchetti M, Rinalducci S (2002) Functional studies of the Synechocystis phycobilisomes organization by high performance liquid chromatography on line with a mass spectrometer. Eur J Biochem 269:1534–1542

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Marxen.

Appendix

Appendix

Using the transfer functions and states (pool sizes) as given in Fig. 8, the following relationships (in the frequency domain, Hansen 1978) can be derived:

The measured quantum yield ϕ is the quantum yield ϕ A of the non-UV-B-radiated system diminished by the action of the ROS pool R via the transfer function f

$$ \phi = {\phi_A} - fR $$
(5)

In the physiostat, the measured ϕ is compared with the set point ϕ S

$$ U = a\left( {\phi - {\phi_S}} \right) $$
(6)

By virtue of the introduction of U T into Eq. 6, the following calculations hold for pure turbidostatic control (amplification of the physiostat a = 0, U T  ≠ 0) and for physiostatic control (a ≠ 0; U T  = 0)

$$ U = a\left( {\phi - {\phi_S}} \right) + {U_T}\, $$
(7)

Insertion of Eq. 5 into Eq. 7 leads to

$$ U = a\left( {{\phi_0} - fR} \right) + {U_T}\,\,\,\,\,\,\,{\hbox{with}}\,\,\,\,\,{\phi_0} = {\phi_A} - {\phi_S} $$
(8)

ϕ 0 comprises the terms which are not dependent on UV-B irradiation and is the sum of ϕ of the undamaged photosystem (i.e., ϕ A ) and the negative set point of the physiostat ϕ S = ϕ PSII,SP.

Synthesis of pigments and antioxidants is stimulated by R. R 0 accounts for the possibility that the organism tolerates a basic level R 0.

$$ P = s\left( {R - {R_0}} \right) $$
(9)

R is generated by U, and P scavenges R. This leads to

$$ R = ua\left( {{\phi_0} - fR} \right) - ps\left( {R - {R_0}} \right) + u{U_T} $$
(10)
$$ R = \frac{{ps{R_0} + u{U_T} + ua{\phi_0}}}{{1 + ps + uaf}} $$
(11)
$$ P = \frac{{ssp{R_0} + su{U_T} + sua{\phi_0}}}{{1 + ps + uaf}} - s{R_0} $$
(12)

The transfer functions a, u, and f can be treated as constant factors within the temporal resolution of the investigations here: a is the electronic amplification (Marxen et al. 2005); u and f are fast because there is an immediate response of p upon irradiation (Marxen et al. 2005; Fig. 1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marxen, K., Vanselow, K.H., Hintze, R. et al. Comparison of two different modes of UV-B irradiation on synthesis of some cellular substances in the cyanobacterium Synechocystis sp. PCC6803. J Appl Phycol 22, 677–690 (2010). https://doi.org/10.1007/s10811-010-9507-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9507-9

Keywords

Navigation