Skip to main content
Log in

Don’t Disturb Me! Understanding the Impact of Interruptions on Knowledge Work: an Exploratory Neuroimaging Study

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

As we become more and more connected, the number of technology interruptions are increasing as well. The mechanisms by which a technology interruption takes attention away and ongoing task performance decreases need more investigation. Through neuroimaging, this paper explores how technologies can interrupt concentration, focus and attention of knowledge workers. Subjects were given reading tasks and subjected to a series of randomly timed audio interruptions. Using an electroencephalogram (EEG) measurement device, we recorded their brain waves. Consistent with the literature, we found interruptions significantly increased task completion time and decreased task performance. Neuroimaging analysis showed activity in the frontal lobe, temporal lobe and insular cortex of the participants due to interruptions. The paper also investigates differences due to gender and age. The results suggest application developers should consider underlying mechanisms of processing interruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014). Momentary interruptions can derail the train of thought. Journal of Experimental Psychology.General, 143(1), 215–226. https://doi.org/10.1037/a0030986.

    Article  Google Scholar 

  • Aral, S., Brynjolfsson, E., & Alstyne, M. (2012). Information, technology, and information worker productivity. Information Systems Research, 23(3/2/2), 849–867. https://doi.org/10.1287/isre.1110.0408.

    Article  Google Scholar 

  • Bailey, B. P., & Konstan, J. A. (2006). On the need for attention-aware systems: Measuring effects of interruption on task performance, error rate, and affective state. Computers in Human Behavior, 22(4), 685–708. https://doi.org/10.1016/j.chb.2005.12.009.

    Article  Google Scholar 

  • Baron, R. S. (1986). Distraction-conflict theory: progress and problems. Advances in Experimental Social Psychology, 19(1986), 1–39.

    Google Scholar 

  • Basoglu, K. A., Fuller, M. A., & Sweeney, J. T. (2009). Investigating the effects of computer mediated interruptions: an analysis of task characteristics and interruption frequency on financial performance. International Journal of Accounting Information Systems, 10(4), 177–189. https://doi.org/10.1016/j.accinf.2009.10.003.

    Article  Google Scholar 

  • Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 351–370.

  • Bobrov, P., Frolov, A., Cantor, C., Fedulova, I., Bakhnyan, M., & Zhavoronkov, A. (2011). Brain-computer interface based on generation of visual images. PLoS One, 6(6), e20674.

    Article  Google Scholar 

  • Brinkley, I. (2009). Knowledge workers and knowledge work: A knowledge economy programme report. London: Work Foundation.

    Google Scholar 

  • Brocke, J., & Liang, T.-p. (2014). Guidelines for neuroscience studies in information systems research. Journal of Management Information Systems, 30(4), 211–233. https://doi.org/10.2753/MIS0742-1222300408.

    Article  Google Scholar 

  • Cane, J., Cauchard, F., & Weger, U. (2012). The time-course of recovery from interruption during reading: eye movement evidence for the role of interruption lag and spatial memory. The Quarterly Journal of Experimental Psychology, 65(7), 1397. https://doi.org/10.1080/17470218.2012.656666.

    Article  Google Scholar 

  • Carmichael, L., & Dearborn, W. F. (1947). Reading and visual fatigue. Boston: Houghton Mifflin.

  • Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral cortex (New York, N.Y.: 1991), 20(4), 859–872. https://doi.org/10.1093/cercor/bhp150.

    Article  Google Scholar 

  • Clapp, W. C., Rubens, M. T., Sabharwal, J., Gazzaley, A., & Raichle, M. E. (2011). Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7212–7217. https://doi.org/10.1073/pnas.1015297108.

    Article  Google Scholar 

  • Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., Lazeron, R. H. C., & Jonker, C. (2001). Parahippocampal activation during successful recognition of words: a self-paced event-related fMRI study. NeuroImage, 13(6), 1113–1120. https://doi.org/10.1006/nimg.2001.0758.

    Article  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    Article  Google Scholar 

  • Dimoka, A., & Davis, F. D. (2008). Where does TAM reside in the brain? The neural mechanisms underlying technology adoption. ICIS 2008 Proceedings, 169.

  • Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). Research commentary-NeuroIS: the potential of cognitive neuroscience for information systems research. Information Systems Research, 22(4), 687–702.

    Article  Google Scholar 

  • Dimoka, A., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Gefen, D., et al. (2012). On the use of Neuropyhsiological tools in IS research: developing a research agenda for NeuroIS. MIS Quarterly, 36(3), 679.

    Article  Google Scholar 

  • Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., Tong, F., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63(1), 127–138. https://doi.org/10.1016/j.neuron.2009.06.005.

    Article  Google Scholar 

  • Eals, M., & Silverman, I. (1994). The hunter-gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in recall of object arrays. Ethology and Sociobiology, 15(2), 95–105.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G* power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.

    Article  Google Scholar 

  • Frei, E., Gamma, A., Pascual-Marqui, R., Lehmann, D., Hell, D., & Vollenweider, F. X. (2001). Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Human Brain Mapping, 14(3), 152–165. https://doi.org/10.1002/hbm.1049.

    Article  Google Scholar 

  • González, V. M., & Mark, G. (2005). Managing currents of work: Multi-tasking among multiple collaborations (pp. 143–162). Dordrecht: Springer Netherlands.

    Google Scholar 

  • Grandhi, S., & Jones, Q. (2010). Technology-mediated interruption management. International Journal of Human-Computer Studies, 68(5), 288–306.

    Article  Google Scholar 

  • Gupta, A., & Sharda, R. (2008). SIMONE: a simulator for interruptions and message overload in network environments. International Journal of Simulation and Process Modelling, 4(3–4), 237–247.

    Article  Google Scholar 

  • Gupta, A., Li, H., & Sharda, R. (2013). Should I send this message? Understanding the impact of interruptions, social hierarchy and perceived task complexity on user performance and perceived workload. Decision Support Systems, 55(1), 135–145.

    Article  Google Scholar 

  • Holmes, A. P., Blair, R. C., Watson, J. D., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow & Metabolism, 16(1), 7–22. https://doi.org/10.1097/00004647-199601000-00002.

    Article  Google Scholar 

  • Kalgotra, P., Sharda, R., & McHaney, R. (2016). Understanding the impact of interruptions on knowledge work: An exploratory neuroimaging study. 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, 2016, pp. 658–667.

  • Kalgotra, P., Luse, A., & Sharda, R. (2017). Take control of interruptions in your life: lessons from routine activity theory of criminology. In Proceedings of the 50th Hawaii International Conference on System Sciences (pp. 5668–5677).

  • Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: assessing the brain response to marketing stimuli using electroencephalogram and eye tracking. Expert Systems with Applications, 40(9), 3803. https://doi.org/10.1016/j.eswa.2012.12.095.

    Article  Google Scholar 

  • Kubicki, S., Herrmann, W., Fichte, K., & Freund, G. (1979). Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatrie, Neuro-Psychopharmakologie, 12(2), 237–245.

    Article  Google Scholar 

  • Lang, A. (2000). The limited capacity model of mediated message processing. Journal of Communication, 50(1), 46–70.

    Article  Google Scholar 

  • Li, H., Gupta, A., Luo, X., & Warkentin, M. (2011). Exploring the impact of instant messaging on subjective task complexity and user satisfaction. European Journal of Information Systems, 20(2), 139–155.

    Article  Google Scholar 

  • Lin, B. C., Kain, J. M., & Fritz, C. (2013). Don’t interrupt me! An examination of the relationship between intrusions at work and employee strain. International Journal of Stress Management, 20(2), 77.

    Article  Google Scholar 

  • Mäntylä, T., Psykologiska, I., Stockholms, U., & Samhällsvetenskapliga, F. (2013). Gender differences in multitasking reflect spatial ability. Psychological Science, 24(4), 514–520.

    Article  Google Scholar 

  • McFarlane, D. C. (1997). Interruption of people in human-computer interaction: A general unifying definition of human interruption and taxonomy (NRL Formalreport NRL/FR/5510–97–9870). Washington, DC: Naval Research Laboratory.

  • Mencl, W. E., Pugh, K. R., Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Constable, R. T., et al. (2000). Network analysis of brain activations in working memory: Behavior and age relationships. Microscopy Research and Technique, 51(1), 64–74. https://doi.org/10.1002/1097-0029(20001001)51:1<64::AID-JEMT7>3.0.CO;2-D.

    Article  Google Scholar 

  • Minas, R. K., Potter, R. F., Dennis, A. R., Bartelt, V., & Bae, S. (2014). Putting on the thinking cap: using NeuroIS to understand information processing biases in virtual teams. Journal of Management Information Systems, 30(4), 49–82. https://doi.org/10.2753/MIS0742-1222300403.

    Article  Google Scholar 

  • Mirz, F., Ovesen, T., Ishizu, K., Johannsen, P., Madsen, S., Gjedde, A., & Pedersen, C. B. (1999). Stimulus-dependent central processing of auditory stimuli: a PET study. Scandinavian Audiology, 28(3), 161–169. https://doi.org/10.1080/010503999424734.

    Article  Google Scholar 

  • Misulis, K. E. (2013). Atlas of EEG, seizure semiology, and management. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. https://doi.org/10.1016/S1364-6613(03)00028-7.

    Article  Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. https://doi.org/10.1002/hbm.1058.

    Article  Google Scholar 

  • O'Conaill, B., & Frohlich, D. (1995). Timespace in the workplace: dealing with interruptions. Paper presented at the Conference companion on Human factors in computing systems.

  • Otten, L. J., Henson, R. N., & Rugg, M. D. (2001). Depth of processing effects on neural correlates of memory encoding. Brain, 124(2), 399–412.

    Article  Google Scholar 

  • Oulasvirta, A., & Saariluoma, P. (2006). Surviving task interruptions: Investigating the implications of long-term working memory theory. International Journal of Human - Computer Studies, 64(10), 941–961. https://doi.org/10.1016/j.ijhcs.2006.04.006.

    Article  Google Scholar 

  • Pascual-Marqui, R. D. (1999). Review of methods for solving the EEG inverse problem. International Journal of Bioelectromagnetism, 1(1), 75–86.

    Google Scholar 

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.

    Google Scholar 

  • Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods of electrical neuronal activity. Part 1: Exact, zero error localization. arXiv:0710.3341 [math-ph].

  • Pascual-Marqui, R. D., & Biscay-Lirio, R. (1993). Spatial resolution of neuronal generators based on EEG and MEG measurements. International Journal of Neuroscience, 68(1–2), 93–105.

    Article  Google Scholar 

  • Pirini, M., Mancini, M., Farella, E., & Chiari, L. (2011). EEG correlates of postural audio-biofeedback. Human Movement Science, 30(2), 249–261. https://doi.org/10.1016/j.humov.2010.05.016.

    Article  Google Scholar 

  • Ren, D., Zhou, H., & Fu, X. (2009). A deeper look at gender difference in multitasking: Gender-specific mechanism of cognitive control. Paper presented at the Natural Computation, 2009. ICNC'09. Fifth International Conference on.

  • Riedl, R., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Dimoka, A., et al. (2010a). On the foundations of NeuroIS: reflections on the Gmunden retreat 2009. Communications of the Association for Information Systems, 27, 243.

    Google Scholar 

  • Riedl, R., Hubert, M., & Kenning, P. (2010b). Are there neural gender differences in online trust?: An fMRI study on the perceived trusworthiness of eBay offers. Management Information Systems, 34(2), 397–428.

    Article  Google Scholar 

  • Sakai, K., & Passingham, R. E. (2004). Prefrontal selection and medial temporal lobe reactivation in retrieval of short-term verbal information. Cerebral cortex (New York, N.Y.: 1991), 14(8), 914–921. https://doi.org/10.1093/cercor/bhh050.

    Article  Google Scholar 

  • Speier, C., Vessey, I., & Valacich, J. S. (2003). The effects of interruptions, task complexity, and information presentation on computer-supported decision-making performance. Decision Sciences, 34(4), 771–797. https://doi.org/10.1111/j.1540-5414.2003.02292.x.

    Article  Google Scholar 

  • Spira, J. B., & Feintuch, J. B. (2005). The cost of not paying attention: How interruptions impact knowledge worker productivity. New York: Basex New York.

    Google Scholar 

  • Stytsenko, K., Jablonskis, E., & Prahm, C. (2011). Evaluation of consumer EEG device Emotiv EPOC. Paper presented at the MEi: CogSci Conference 2011, Ljubljana.

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain 3-dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme Medical Publishers.

  • Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted task: effects of prospective goal encoding and retrospective rehearsal. International Journal of Human - Computer Studies, 58(5), 583–603. https://doi.org/10.1016/S1071-5819(03)00023-5.

    Article  Google Scholar 

  • Wickens, C. D., & McCarley, J. S. (2007). Applied attention theory. Boca Raton: CRC press.

    Book  Google Scholar 

  • Xu, X., Ma, W. W. K., & See-To, E. W. K. (2010). Will mobile video become the killer application for 3G mobile internet? A model of media convergence acceptance. Information Systems Frontiers, 12(3), 311–322.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the associate editor and two anonymous reviewers for their useful feedback that improved this paper. Many thanks to Dr. James E. Cane for sharing the readings/paragraphs adopted in our experiment. We also thank Vijay Singh and Nandan Moza for their assistance during the experiment.

An earlier version of this paper was presented at 49th Hawaii International Conference on System Sciences (HICSS), 2016 (Kalgotra et al. 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankush Kalgotra.

Appendices

Appendix 1

Table 3 Below are three exemplar observations

Appendix 2

Table 4 Significant brain activity while correct interrupted readings

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalgotra, P., Sharda, R. & McHaney, R. Don’t Disturb Me! Understanding the Impact of Interruptions on Knowledge Work: an Exploratory Neuroimaging Study. Inf Syst Front 21, 1019–1030 (2019). https://doi.org/10.1007/s10796-017-9812-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-017-9812-9

Keywords

Navigation