Skip to main content
Log in

Stochastic Quantization of Massive Fermions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a general solution of the Langevin equation describing massive fermions to an appropriate boundary problem. Assuming existence of such solution we show that its correlators coincide with the Schwinger functions of corresponding Euclidean Quantum Field Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kupiainen, A.: Renormalization group and stochastic PDE’s. Annales Henri Poincaré 17, 497–535 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hairer, M.: Introduction to regularity structures. Braz. J. Probab. Stat. 29, 175–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Glimm, J.: The Yukawa coupling of quantum fields in two dimensions. II. Commun. Math. Phys. 6(1), 61–76 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gross, D.J., Neveu, A.: Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D 10, 3235–3253 (1974)

    Article  ADS  Google Scholar 

  5. Wilson, K.G.: Renormalization group and critical phenomena. Phys. Rev. B 4 (9), 3174–3183 (1971)

    Article  ADS  MATH  Google Scholar 

  6. Parisi, G., Wu, Y.: Perturbation theory without gauge fixing. Sci. Sin. 24, 483 (1981)

    MathSciNet  Google Scholar 

  7. Berezin, F.A.: Introduction to Superanalysis. Springer (1987)

  8. Damgaard, P.H., Hüffel, H.: Stochastic quantization. Phys. Rep. 152(5), 227–398 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zinn-Justin, J.: Renormalization and stochastic quantization. Nucl. Phys. B275, 135–159 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Osterwalder, K.: Euclidean Fermi Fields, pp. 326–331. Springer, Berlin (1973)

    Google Scholar 

  11. Glimm, J., Jaffe, A.: Quantum Physics. Springer (1987)

  12. Osterwalder, K., Schrader, R.: Feynman-kac formula for euclidean fermi and bose fields. Phys. Rev. Lett. 29, 1423–1425 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the Institute for Theoretical Physics at the University of Leipzig, Germany for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: U r and \(\mathsf {U}_{\mathsf {l}}^{T}\)

Since in a general situation the potential V includes all required counterterms which are fine-tuned to cancel singularities we still use here the same notation as if we have the whole action L. Furthermore all derivatives below are left derivatives.

$$\begin{array}{@{}rcl@{}} \mathsf{U}_{\mathsf{r}}&=&\left( \begin{array}{lll}-\frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \psi_{j}}&-\frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \bar{\psi}_{j}}&\frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \phi_{j}}\\ \frac{\delta^{2} L}{\delta \psi_{i} \delta \psi_{j}}&\frac{\delta^{2} L}{\delta \psi_{i} \delta \bar{\psi}_{j}}&-\frac{\delta^{2} L}{\delta \psi_{i} \delta \phi_{j}}\\ -\frac{\delta^{2} L}{\delta \phi_{i} \delta \psi_{j}}&-\frac{\delta^{2} L}{\delta \phi_{i} \delta \bar{\psi}_{j}}&\frac{\delta^{2} L}{\delta \phi_{i} \delta \phi_{j}} \end{array}\right)=\left( \begin{array}{lll} u_{11}& u_{12}& u_{13} \\ u_{21}&u_{22}&u_{23}\\u_{31}&u_{32}&u_{33} \end{array}\right) \end{array} $$
(38)
$$\begin{array}{@{}rcl@{}} \mathsf{U}_{\mathsf{l}}^{T}&=&\left( \begin{array}{lll}\frac{\delta^{2} L}{\delta \psi_{i} \delta \bar{\psi}_{j}}&-\frac{\delta^{2} L}{\delta \psi_{i} \delta \psi_{j}}&\frac{\delta^{2} L}{\delta \psi_{i} \delta \phi_{j}}\\ \frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \bar{\psi}_{j}}&-\frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \psi_{j}}&\frac{\delta^{2} L}{\delta \bar{\psi}_{i} \delta \phi_{j}}\\ \frac{\delta^{2} L}{\delta \phi_{i} \delta \bar{\psi}_{j}}&-\frac{\delta^{2} L}{\delta \phi_{i} \delta \psi_{j}}&\frac{\delta^{2} L}{\delta \phi_{i} \delta \phi_{j}} \end{array}\right)=\left( \begin{array}{lll} u_{22}& -u_{21}& -u^{T}_{31} \\ -u_{12}&u_{11}&-u^{T}_{32}\\u^{T}_{13}&u^{T}_{23}&u_{33} \end{array}\right) \end{array} $$
(39)

The equation \(Q^{T} \mathsf {U}_{\mathsf {l}}^{T}=\mathsf {U}_{\mathsf {r}} Q^{T}\) is equivalent to \(u_{31}=u^{T}_{23}\) and \(u_{13}=-u^{T}_{32}\).

Appendix B: Symmetries of the action

We define as usual the time and parity reversal operators

$$\begin{array}{@{}rcl@{}} \mathcal{T}:\left( \begin{array}{ll} x_{1} , x_{2} \end{array}\right) \mapsto \left( \begin{array}{ll} -x_{1} , x_{2} \end{array}\right), \quad \mathcal{P}:\left( \begin{array}{ll} x_{1} , x_{2} \end{array}\right) \mapsto \left( \begin{array}{ll} x_{1} , - x_{2} \end{array}\right), \end{array} $$
(40)

and corresponding transformations for the spinor ψ

$$\begin{array}{@{}rcl@{}} P: \psi(x) \mapsto \gamma_{1} \psi(\mathcal{P} x), \quad T: \psi(x) \mapsto \gamma_{3} \psi(\mathcal{T} x), \quad C: \psi(x) \mapsto \gamma_{1} \bar{\psi}(x), \end{array} $$
(41)

where T is anti-linear, i.e. TαψT− 1 = αTψT− 1. The action L, see (5), is invariant under P. Invariance under CT can be obtained if one simultaneous makes inversion of the sign of m

$$\begin{array}{@{}rcl@{}} \psi(x) \mapsto \gamma_{2} \bar{\psi}(\mathcal{T}x), \quad \bar{\psi}(x)\mapsto \psi(\mathcal{T}x) \gamma_{2},\quad m\mapsto -m. \end{array} $$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.N. Stochastic Quantization of Massive Fermions. Int J Theor Phys 58, 1150–1156 (2019). https://doi.org/10.1007/s10773-019-04006-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04006-w

Keywords

Navigation