Skip to main content
Log in

Nonclassical Properties of an Opto-Mechanical System Initially Prepared in N-Headed Cat State and Number State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Non-classical quantum states have been applied more and more deeply in quantum communication and quantum computation. By using the time evolution theory and the nonlinearlity of opto-mechanical system, new quantum states can be prepared in the opto-mechanical system which is composed of an N-headed cat state of photonic mode and a number state of mechanical mode. The distribution of the Wigner function (WF) of the mechanical mode exhibits the superposition of several WF wave packets of displaced number states. And it is interesting to find that the parameter N affects the wave-packet numbers of displaced number states in phase space for mechanical mode and the shape of the WF wave packets for photonic mode. The nonclassical properties are investigated through the WF and the negative part volume of WF. An interesting result is that the nonclassicality increases (decreases) with the parameter N for mechanical (photonic) mode. And for the initial state of larger value of parameter N, the increment of the nonclassicality for mechanical (or photonic) mode is increasing more with parameter k (or α). Furthermore the parameter N also affects the entanglement degree between the photonic mode and the mechanical mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. Walter, S., Marquardt, F.: Classical dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016)

    Article  ADS  Google Scholar 

  3. Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  4. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  5. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Article  ADS  Google Scholar 

  6. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., ClelandA, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  7. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)

    Article  ADS  Google Scholar 

  8. Grudinin, I.S., Lee, H., Painter, O., Vahala, K.J.: Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)

    Article  ADS  Google Scholar 

  9. Fonseca, P.Z.G., Aranas, E.B., Millen, J., Monteiro, T.S., Barker, P.F.: Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 117, 173602 (2016)

    Article  ADS  Google Scholar 

  10. Vitali, D., Mancini, S., Ribichini, L., Tombesi, P.: Mirror quiescence and high-sensitivity position measurements with feedback. Phys. Rev. A 65, 063803 (2002)

    Article  ADS  Google Scholar 

  11. Zhang, K., Bariani, F., Dong, Y., Zhang, W., Meystre, P.: Proposal for an optomechanical microwave sensor at the subphoton level. Phys. Rev. Lett. 114, 113601 (2015)

    Article  ADS  Google Scholar 

  12. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)

    Article  ADS  Google Scholar 

  13. Arvanitaki, A., Geraci, A.A.: Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013)

    Article  ADS  Google Scholar 

  14. Ma, Y.-Q., Danilishin, S.L., Zhao, C.-N., Miao, H.-X., Korth, W.Z., Chen, Y.-B., Ward, R.L., Blair, D.G.: Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Phys. Rev. Lett. 113, 151102 (2014)

    Article  ADS  Google Scholar 

  15. Abbott, B.P.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Clerk, A.A., Marquardt, F., Harris, J.G.E.: Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010)

    Article  ADS  Google Scholar 

  17. Vivoli, V.C., Barnea, T., Galland, C., Sangouard, N.: Proposal for an optomechanical bell test. Phys. Rev. Lett. 116, 070405 (2016)

    Article  ADS  Google Scholar 

  18. Kenan, Q., Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87, 063813 (2013)

    Article  ADS  Google Scholar 

  19. Jiang, C., Jiang, L., Yu, H.-L., Cui, Y.-S., Li, X.-W., Chen, G.B.: Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 96, 053821 (2017)

    Article  ADS  Google Scholar 

  20. Restrepo, J., Favero, I., Ciuti, C.: Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 95, 023810 (2017)

    Article  Google Scholar 

  21. Cotufo, M., Fiore, A., Verhagen, E.: Coherent atom-phonon interaction through mode field coupling in hybrid optomechanical systems. Phys. Rev. Lett. 118, 133603 (2017)

    Article  ADS  Google Scholar 

  22. Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 83, 063826 (2011)

    Article  ADS  Google Scholar 

  23. Xu, X.-W., Wang, H., Zhang, J., Liu, Y.-X.: Engineering of nonclassical motional states in optomechanical systems. Phys. Rev. A 88, 063819 (2013)

    Article  ADS  Google Scholar 

  24. Xu, X.-W., Zhao, Y.-J., Liu, Y.-X.: Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Phys. Rev. A 88, 022325 (2013)

    Article  ADS  Google Scholar 

  25. Lei, F.-C., Gao, M., Du, C.-G., Jing, Q.-L., Long, G.-L.: Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. J. Opt. Soc. Am. B 32, 588 (2015)

    Article  ADS  Google Scholar 

  26. Lee, S.Y., Lee, C.W., Nha, H., kaszlikowski, D.: Quantum phase estimation using a multi-headed cat state. J. Opt. Soc. Am. B 32, 1186 (2015)

    Article  ADS  Google Scholar 

  27. Jiang, L.-Y., Guo, Q., Xu, X.-X., Cai, M., Yuan, W., Duan, Z.-L.: Dynamics and nonclassical properties of an opto-mechanical system prepared in four-headed cat state and number state. Opt. Commun. 369, 179 (2016)

    Article  ADS  Google Scholar 

  28. Bose, S., Jacods, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Article  ADS  Google Scholar 

  29. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon schröinger cat states. Science 342, 607 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhou, N.-R., Li, J.-F., Yu, Z.-B., Gong, L.-H., Farouk, A.: New quantum dialogue protocol based on continuous variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)

    Article  ADS  MATH  Google Scholar 

  31. Liao, Q.-H., Ye, Y., Jin, P., Zhou, N.-R., Nie, W.-J.: Tripartite entanglement in an atom-cavity-optomechanical system. Int. J. Theor. Phys. 57, 1319 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  33. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  34. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quant. Semiclass. Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Sekatski, P., Aspelmeyer, M., Sangouard, N.: Macroscopic optomechanics from displaced single-photon entanglement. Phys. Rev. Lett. 112, 080502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Nos. 11664018 and 11764020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Guo.

Appendix: Derivation of Time Evolution Operator (2)

Appendix: Derivation of Time Evolution Operator (2)

The Hamiltonian of the opto-mechanical system is \(H=\hbar \omega _{0}a^{\dagger }a+\hbar \omega _{m}b^{\dagger }b-\hbar g_{0}a^{\dagger }a\left (b^{\dagger }+b\right ) \) , where \(\hbar \omega _{0}a^{\dagger }a\) is the free Hamiltonian of light field, \(\hbar \omega _{m}b^{\dagger }b\) is the Hamiltonian of mechanical oscillator and \(\hbar g_{0}a^{\dagger }a\left (b^{\dagger }+b\right ) \) is the interaction Hamiltonian between light field and mechanical oscillator. Let \(H_{0}=\hbar \omega _{0}a^{\dagger }a\), \( V=\hbar \omega _{m}b^{\dagger }b-\hbar g_{0}a^{\dagger }a\left (b^{\dagger }+b\right ) \), then H = H0 + V. And the time evolution operator is given by \( U\left (t\right ) =\exp (-iH_{0}t/\hbar )=\exp \left [ -i\left (\omega _{0}a^{\dagger }a\right ) t\right ] \). According to the transformation formula between Schrödinger’s representation and interaction representation,

$$ H_{I}=i\hbar \frac{dU^{\dagger }}{dt}U+U^{\dagger }HU, $$
(16)

we obtain the Hamiltonian of the system in interaction representation [35]

$$ H_{I}=\hbar \omega_{m}b^{\dagger }b-\hbar g_{0}a^{\dagger }a\left( b^{\dagger }+b\right) . $$
(17)

Then we have the time evolution operator in interaction representation \( U(t^{^{\prime }})=\exp \{-i[\omega _{m}b^{\dagger }b-g_{0}a^{\dagger }a\left (b^{\dagger }+b\right ) ]t^{^{\prime }}\}\). Let \(t=\omega _{m}t^{^{\prime }}\) and g = g0/ωm, then U (t) = exp{−it[bbgaa (b + b)]}. Using the formula eA + B = eAeBe−[A, B]/2 and [a, a] = [b, b] = 1, [a, b] = [a, b] = 0, we obtain the time evolution operator U (t)

$$ U\left( t\right) =\exp \left[ i\left( ga^{\dagger }a\right)^{2}t\right] \exp \left[ -it\left( b^{\dagger }-ga^{\dagger }a\right) \left( b-ga^{\dagger }a\right) \right] . $$
(18)

It is well known that \(D_{b}\left (\alpha \right ) bD_{b}^{\dagger }\left (\alpha \right ) =b-\alpha \) where the displacement operator Db (α) = exp [αbαb] acts on mechanical mode only, we can get \(U\left (t\right ) =\exp \left [ i\left (ga^{\dagger }a\right )^{2}t\right ] D_{b}\left (ga^{\dagger }a\right ) \exp \left [ -itb^{\dagger }b\right ] D_{b}^{\dagger }\left (ga^{\dagger }a\right ) \). Considering the normally ordering form (noted as ::) of operator exp [λbb] =: exp [(eλ − 1) bb] :, we can further obtain

$$ U\left( t\right) =\exp \left[ i\left( ga^{\dagger }a\right)^{2}t\right] :\exp \left[ \eta \left( b^{\dagger }-ga^{\dagger }a\right) \left( b-ga^{\dagger }a\right) \right] :, $$
(19)

here η = 1 − eit. According to the Baker-Hausdorf formula \(e^{\lambda A}Be^{-\lambda A}=B+\lambda \left [ A,B\right ] +\frac {\lambda ^{2}}{2!}\left [ A,\left [ A,B\right ] \right ] +{\cdots } \), we get rid of the sign of normally ordering and obtain

$$ U\left( t\right) =\exp \left[ i\left( ga^{\dagger }a\right)^{2}\left( t-\sin t\right) \right] \exp \left[ ga^{\dagger }a\left( \eta b^{\dagger }-\eta^{\ast }b\right) \right] \exp \left[ -it\left( b^{\dagger }b\right) \right] . $$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Guo, Q. & Yuan, W. Nonclassical Properties of an Opto-Mechanical System Initially Prepared in N-Headed Cat State and Number State. Int J Theor Phys 58, 58–70 (2019). https://doi.org/10.1007/s10773-018-3909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3909-x

Keywords

Navigation