Skip to main content
Log in

Absorption, Transmission and Amplification in a Double-Cavity Optomechanical System with Coulomb-Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We explore three interesting phenomena in a double-cavity optomechanical system: coherent perfect absorption, coherent perfect transmission and output signal amplification, and find that these phenomena can be realized and controlled by the coulomb-interaction between the dissipative oscillator locates in the cavity and the gain oscillator locates outside. They originate from the efficient hybrid coupling of optical and mechanical modes, and can be used for realizing novel photonic devices in quantum information networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, S., Moore, K.L., Murch, K.W., Stamper-Kurn, D.M.: Cavity Nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007)

    Article  ADS  Google Scholar 

  2. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  3. Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature (London) 462, 78 (2009)

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys 86, 1391 (2014)

    Article  ADS  Google Scholar 

  5. Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  6. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. (Berlin) 525, 215 (2013)

    Article  ADS  MATH  Google Scholar 

  7. Marquardt, F., Girvin, S.M.: Optomechanics, arXiv:0905.0566 (2009)

  8. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  9. Tan, H., Li, G., Meystre, P.: Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Phys. Rev. A 87, 033829 (2013)

    Article  ADS  Google Scholar 

  10. Woolley, M.J., Clerk, A.A.: Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A. 89, 063805 (2014)

    Article  ADS  Google Scholar 

  11. Wang, D.-Y., Bai, C.-H., Wang, H.-F., Zhu, A.-D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Scientific Reports 6, 38559 (2016)

    Article  ADS  Google Scholar 

  12. Wang, D.-Y., Bai, C.-H., Wang, H.-F., Zhu, A.-D., Zhang, S.: Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Scientific Reports 6, 24421 (2016)

    Article  ADS  Google Scholar 

  13. Mazzola, L., Paternostro, M.: Distributing fully optomechanical quantum correlations. Phys. Rev. A 83, 062335 (2011)

    Article  ADS  Google Scholar 

  14. Huang, S., Agarwal, G.S.: Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New J. Phys. 103044, 11 (2009)

    Google Scholar 

  15. Pinard, S.M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747 (2005)

    Article  ADS  Google Scholar 

  16. Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep. 6, 33404 (2016)

    Article  ADS  Google Scholar 

  17. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gigan, S., Bohm, H., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J., Schwab, K., Bauerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature (London) 444, 67–70 (2006)

    Article  ADS  Google Scholar 

  19. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75–78 (2006)

    Article  ADS  Google Scholar 

  20. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics, vol. 15 (2007)

  21. Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J.: Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)

    Article  Google Scholar 

  22. Schmid, S.I., Xia, K.Y., Evers, J.: Pathway interference in a loop array of three coupled microresonators. Phys. Rev. A 84, 013808 (2011)

    Article  ADS  Google Scholar 

  23. Paternostro, M., De Chiara, G., Palma, G.M.: Cold-atom-induced control of an optomechanical device. Phys. Rev. Lett. 104, 243602 (2010)

    Article  ADS  Google Scholar 

  24. De Chiara, G., Paternostro, M., Palma, G.M.: Entanglement detection in hybrid optomechanical systems. Phys. Rev. A 83, 052324 (2011)

    Article  ADS  Google Scholar 

  25. Steinke, S.K., Meystre, P.: Role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity. Phys. Rev. A 84, 023834 (2011)

    Article  ADS  Google Scholar 

  26. Singh, S., Jing, H., Wright, E.M., Meystre, P.: Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror. Phys. Rev. A 86, 021801(R) (2012)

    Article  ADS  Google Scholar 

  27. Rogers, B., Paternostro, M., Palma, G.M., De Chiara, G.: Entanglement control in hybrid optomechanical systems. Phys. Rev. A 86, 042323 (2012)

    Article  ADS  Google Scholar 

  28. Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzanjeh, Sh.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)

    Article  ADS  Google Scholar 

  29. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Di Giuseppe, G., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  30. Komar, P., Bennett, S.D., Stannigel, K., Habraken, S.J.M., Rabl, P., Zoller, P., Lukin, M.D.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)

    Article  ADS  Google Scholar 

  31. Mari, A., Eisert, J.: Cooling by heating: Very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett 108, 120602 (2012)

    Article  ADS  Google Scholar 

  32. Wang, Q., Zhang, J.-Q., Ma, P.-C., Yao, C.-M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)

    Article  ADS  Google Scholar 

  33. Wu, Q., Zhang, J.-Q., Wu, J.-H., Feng, M., Zhang, Z.-M.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express 23, 18535 (2015)

    ADS  Google Scholar 

  34. Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)

    Article  ADS  Google Scholar 

  35. Zhang, J.-Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  36. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  37. Chen, R.-X., Shen, L.-T., Zheng, S.-B.: Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A 91, 022326 (2015)

    Article  ADS  Google Scholar 

  38. Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Sci. Rep. 7, 2545 (2017)

    Article  ADS  Google Scholar 

  39. Agarwal, G.S., Huang, S.: Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys. 16, 033023 (2014)

    Article  ADS  Google Scholar 

  40. Wu, Y., Yang, X.: Quantum theory for microcavity enhancement of second harmonic generation. J. Phys. B 34, 2281 (2001)

    Article  ADS  Google Scholar 

  41. Day, J.K., Chung, M.-H., Lee, Y.-H., Menon, V.M.: Microcavity enhanced second harmonic generation in 2D MoS 2. Opt. Mater. Express. 6, 2360 (2016)

    Article  Google Scholar 

  42. Rodriguez, A., Soljacic, M., Joannopoulos, J.D., Johnson, S.G.: (2) and (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt. Express 15, 7303 (2007)

    Article  ADS  Google Scholar 

  43. Li, W., Lesanovsky, I.: Coherence in a cold-atom photon switch. Phys. Rev. A 92, 043828 (2015)

    Article  ADS  Google Scholar 

  44. Baur, S., Tiarks, D., Rempe, G., Durr, S.: Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 073901, 112 (2014)

    Google Scholar 

  45. Rosenblum, S., Parkins, S., Dayan, B.: Photon routing in cavity QED: Beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011)

    Article  ADS  Google Scholar 

  46. Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)

    Article  ADS  Google Scholar 

  47. Liu, Y.-L., Wu, R., Zhang, J., Ozdemir, S.K., Yang, L., Nori, F., Liu, Y.-X.: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. R. A 95, 013843 (2017)

    Article  ADS  Google Scholar 

  48. Yan, X.-B., Cui, C.-L., Gu, K.-H., Tian, X.-D., Fu, C.-B., Wu, J.-H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22, 4887 (2014)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under Grants No. 11534002, 11405008 and No. 61475033, and the Plan for Scientific and Technological Development of Jilin Province under Grant No. 20160520173JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Liu.

Appendices

Appendix A: Instructions on Simplifying H c

Equation (3) can be rewritten as follow,

$$\begin{array}{@{}rcl@{}} {H_{c}} &=& \frac{{ - {C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon_{0}}{r_{0}}}}\left[ {1 - \frac{{{q_{1}} - {q_{2}}}}{{{r_{0}}}} + {{\left( {\frac{{{q_{1}} - {q_{2}}}}{{{r_{0}}}}} \right)}^{2}}} \right] \\ &=& \frac{{ - {C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon_{0}}{r_{0}}}} + \frac{{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon_{0}}{r_{0}}^{2}}}\left( {{q_{1}} \!- {q_{2}}} \right) - \frac{{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon_{0}}{r_{0}}^{3}}}\left( {{q_{1}^{2}} + {q_{2}^{2}}} \right) \!+ \frac{{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{2\pi {\varepsilon_{0}}{r_{0}}^{3}}}{q_{1}}{q_{2}} \\ &=& \frac{{ - {C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon_{0}}{r_{0}}}} + \hbar \xi \left( {{q_{1}} - {q_{2}}} \right) - \hbar {\Theta} \left( {{q_{1}^{2}} + {q_{2}^{2}}} \right) + \hbar \lambda {q_{1}}{q_{2}}, \end{array} $$
(22)

where \(\xi = \frac {{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi \hbar {\varepsilon _{0}}{r_{0}}^{2}}}\), \({\Theta } = \frac {{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi \hbar {\varepsilon _{0}}{r_{0}}^{3}}}\), \(\lambda = \frac {{{C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{2\pi \hbar {\varepsilon _{0}}{r_{0}}^{3}}}\). The constant term \(\frac {{ - {C_{1}}{U_{1}}{C_{2}}{U_{2}}}}{{4\pi {\varepsilon _{0}}{r_{0}}}}\) can be omitted. The quadratic term includes a renormalization of the oscillation frequencies for both NR1 and NR2. There are quadratic terms \({\frac {1}{2}{m_{1}}\omega _{m1}^{2}{q_{1}^{2}}}\) and \({\frac {1}{2}{m_{2}}\omega _{m2}^{2}{q_{2}^{2}}}\) in (5), then the calculation process is,

$$\begin{array}{@{}rcl@{}} \frac{1}{2}{m_{1}}\omega_{m1}^{2}{q_{1}^{2}} - \hbar {\Theta} {q_{1}^{2}} &=& \frac{1}{2}{m_{1}}\left( {\omega_{m1}^{2} - \frac{{2\hbar {\Theta} }}{{{m_{1}}}}} \right){q_{1}^{2}} \equiv \frac{1}{2}{m_{1}}{\omega_{1}^{2}}{q_{1}^{2}}, \\ \frac{1}{2}{m_{2}}\omega_{m2}^{2}{q_{2}^{2}} - \hbar {\Theta} {q_{2}^{2}} &=& \frac{1}{2}{m_{2}}\left( {\omega_{m2}^{2} - \frac{{2\hbar {\Theta} }}{{{m_{2}}}}} \right){q_{2}^{2}} \equiv \frac{1}{2}{m_{2}}{\omega_{2}^{2}}{q_{2}^{2}}, \end{array} $$
(23)

where \({\omega _{1}^{2}} = \omega _{m1}^{2} - \frac {{2\hbar {\Theta } }}{{{m_{1}}}},{\omega _{2}^{2}} = \omega _{m2}^{2} - \frac {{2\hbar {\Theta } }}{{{m_{2}}}}\). Thus, H c can be reduced as follow,

$$\begin{array}{@{}rcl@{}} {H_{c}} = \hbar \xi \left( {{q_{1}} - {q_{2}}} \right) + \hbar \lambda {q_{1}}{q_{2}}, \end{array} $$
(24)

where the linear term may be absorbed into the definition of the equilibrium positions (This can be seen from the (9)). For the sake of simplicity, the coordinates and momentum operators of the harmonic oscillators are written in the form of the phonon creation operator (b) and the annihilation operator (b), i.e. \({q_{\alpha } } = \sqrt {\frac {\hbar }{{2{m_{\alpha } }{\omega _{\alpha } }}}} \left ({{b_{\alpha } } + b_{\alpha }^{\dag } } \right )\), \({p_{\alpha } } = i\sqrt {\frac {{\hbar {m_{\alpha } }{\omega _{\alpha } }}}{2}} \left ({b_{\alpha }^{\dag } - {b_{\alpha } }} \right )\), with α = 1, 2.

So H c can be transformed finally as follow,

$$\begin{array}{@{}rcl@{}} {H_{c}} &=& \hbar \xi \sqrt {\frac{\hbar }{{2{m_{1}}{\omega_{1}}}}} \left( {{b_{1}} + b_{1}^{\dag} } \right) - \hbar \xi \sqrt {\frac{\hbar }{{2{m_{2}}{\omega_{2}}}}} \left( {{b_{2}} + b_{2}^{\dag} } \right) \\ &+& \hbar \lambda \sqrt {\frac{\hbar }{{2{m_{1}}{\omega_{1}}}}} \sqrt {\frac{\hbar }{{2{m_{2}}{\omega_{2}}}}} \left( {{b_{1}} + b_{1}^{\dag} } \right)\left( {{b_{2}} + b_{2}^{\dag} } \right) \\ &=& \hbar {\xi_{1}}\left( {{b_{1}} + b_{1}^{\dag} } \right) - \hbar {\xi_{2}}\left( {{b_{2}} + b_{2}^{\dag} } \right) + \hbar \eta \left( {{b_{1}} + b_{1}^{\dag} } \right)\left( {{b_{2}} + b_{2}^{\dag} } \right), \end{array} $$
(25)

where \({\xi _{1}} = \xi \sqrt {\frac {\hbar }{{2{m_{1}}{\omega _{1}}}}} ,{\xi _{2}} = \xi \sqrt {\frac {\hbar }{{2{m_{2}}{\omega _{2}}}}} ,\eta = \lambda \sqrt {\frac {\hbar }{{2{m_{1}}{\omega _{1}}}}} \sqrt {\frac {\hbar }{{2{m_{2}}{\omega _{2}}}}}\).

Appendix B: Instruction for Three Situations of Coherent Perfect Transmission

In the discussion of coherent perfect transmission, there are three cases of the solutions of (20). In order to better illustrate this, we write (20) as follow,

$$\begin{array}{@{}rcl@{}} n &=& 1, \\ {\gamma_{1}} &\to& 0, \\ {\gamma_{2}} &\to& 0, \\ {x_ \pm } &=& \pm \sqrt {{y_{1, 2}}}, \\ {y_{1, 2}} &=& \frac{{ - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}} \pm \sqrt {{{\left( { - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}}} \right)}^{2}} + 4{\kappa^{2}}{\eta^{2}}} }}{2}. \end{array} $$
(26)

The value of y1, 2 must be greater than or equal to zero, because \({x_ \pm } = \pm \sqrt {{y_{1, 2}}} \). When − κ2 + η2 + 2G2 < 0, we must take + in the expression of y1, 2 to ensure that y1, 2 is greater than zero. Thus, there are two solutions in this case as follow,

$$\begin{array}{@{}rcl@{}} {x_ \pm } &=& \pm \sqrt {{y_{1, 2}}} , \\ {y_{1, 2}} &=& \frac{{ - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}} + \sqrt {{{\left( { - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}}} \right)}^{2}} + 4{\kappa^{2}}{\eta^{2}}} }}{2}. \end{array} $$
(27)

When − κ2 + η2 + 2G2 = 0, we can take ± in the expression of y1, 2. Then there are two solutions in this case as follow,

$$\begin{array}{@{}rcl@{}} {x_ \pm } &=& \pm \sqrt{{y_{1, 2}}} , \\ {y_{1, 2}} &=& \kappa \eta. \end{array} $$
(28)

When − κ2 + η2 + 2G2 > 0, we can take + in the expression of y1, 2 to ensure that y1, 2 is greater than zero. Thus, there are two solutions in this case as follow,

$$\begin{array}{@{}rcl@{}} {x_ \pm } &=& \pm \sqrt{{y_{1, 2}}} , \\ {y_{1, 2}} &=& \frac{{ - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}} + \sqrt {{{\left( { - {\kappa^{2}} + {\eta^{2}} + 2{G^{2}}} \right)}^{2}} + 4{\kappa^{2}}{\eta^{2}}} }}{2}. \end{array} $$
(29)

According to the above analysis, we obtain three situations of the solutions of (20) solution and draw Figs. 57 and 8.

Fig. 7
figure 7

(Color online) The second situation (− κ2 + η2 + 2G2 = 0): a Normalized output probe field energy \({E_{Lt}} = {\left | {{\varepsilon _{outL + }}/{\varepsilon _{L}}} \right |^{2}}\) versus normalized input probe field detuning x/κ for η = 0.2κ (red-dotted), η = 0.5κ (black-solid), and η = 0.8κ (blue-dashed) with \(G = \sqrt {\frac {{{\kappa ^{2}} - {\eta ^{2}}}}{2}}\). b Normalized output probe field energy \({E_{Rt}} = {\left | {{\varepsilon _{outR + }}/{\varepsilon _{L}}} \right |^{2}}\) versus normalized input probe field detuning x/κ for η = 0.2κ (red-dotted), η = 0.5κ (black-solid), and η = 0.8κ (blue-dashed) with \(G = \sqrt {\frac {{{\kappa ^{2}} - {\eta ^{2}}}}{2}}\). Other parameters have been given at the beginning of Section 3

Fig. 8
figure 8

(Color online) The third situation (\({\eta ^{2}} > {\kappa ^{2}} - {G^{2}}\left ({{n^{2}} + 1} \right )\)): a Normalized output probe field energy \({E_{Lt}} = {\left | {{\varepsilon _{outL + }}/{\varepsilon _{L}}} \right |^{2}}\) versus normalized input probe field detuning x/κ for η = 0.8κ (red-dotted), η = κ (black-solid), and η = 1.2κ (blue-dashed) with G = 0.6κ. b Normalized output probe field energy \({E_{Rt}} = {\left | {{\varepsilon _{outR + }}/{\varepsilon _{L}}} \right |^{2}}\) versus normalized input probe field detuning x/κ for η = 0.8κ (red-dotted), η = κ (black-solid), and η = 1.2κ (blue-dashed) with G = 0.6κ. Other parameters have been given at the beginning of Section 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Liu, H.D. Absorption, Transmission and Amplification in a Double-Cavity Optomechanical System with Coulomb-Interaction. Int J Theor Phys 57, 2151–2166 (2018). https://doi.org/10.1007/s10773-018-3740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3740-4

Keywords

Navigation