Absorption, Transmission and Amplification in a Double-Cavity Optomechanical System with Coulomb-Interaction

Article
  • 18 Downloads

Abstract

We explore three interesting phenomena in a double-cavity optomechanical system: coherent perfect absorption, coherent perfect transmission and output signal amplification, and find that these phenomena can be realized and controlled by the coulomb-interaction between the dissipative oscillator locates in the cavity and the gain oscillator locates outside. They originate from the efficient hybrid coupling of optical and mechanical modes, and can be used for realizing novel photonic devices in quantum information networks.

Keywords

Optomechanical systems Coherent perfect absorption Coherent perfect transmission Output signal amplification The coulomb-interaction 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under Grants No. 11534002, 11405008 and No. 61475033, and the Plan for Scientific and Technological Development of Jilin Province under Grant No. 20160520173JH.

References

  1. 1.
    Gupta, S., Moore, K.L., Murch, K.W., Stamper-Kurn, D.M.: Cavity Nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature (London) 462, 78 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys 86, 1391 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)CrossRefGoogle Scholar
  6. 6.
    Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. (Berlin) 525, 215 (2013)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Marquardt, F., Girvin, S.M.: Optomechanics, arXiv:0905.0566 (2009)
  8. 8.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Tan, H., Li, G., Meystre, P.: Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Phys. Rev. A 87, 033829 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Woolley, M.J., Clerk, A.A.: Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A. 89, 063805 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, D.-Y., Bai, C.-H., Wang, H.-F., Zhu, A.-D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Scientific Reports 6, 38559 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, D.-Y., Bai, C.-H., Wang, H.-F., Zhu, A.-D., Zhang, S.: Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Scientific Reports 6, 24421 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Mazzola, L., Paternostro, M.: Distributing fully optomechanical quantum correlations. Phys. Rev. A 83, 062335 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Huang, S., Agarwal, G.S.: Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light. New J. Phys. 103044, 11 (2009)Google Scholar
  15. 15.
    Pinard, S.M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Sci. Rep. 6, 33404 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gigan, S., Bohm, H., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J., Schwab, K., Bauerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature (London) 444, 67–70 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75–78 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics, vol. 15 (2007)Google Scholar
  21. 21.
    Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J.: Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)CrossRefGoogle Scholar
  22. 22.
    Schmid, S.I., Xia, K.Y., Evers, J.: Pathway interference in a loop array of three coupled microresonators. Phys. Rev. A 84, 013808 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Paternostro, M., De Chiara, G., Palma, G.M.: Cold-atom-induced control of an optomechanical device. Phys. Rev. Lett. 104, 243602 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    De Chiara, G., Paternostro, M., Palma, G.M.: Entanglement detection in hybrid optomechanical systems. Phys. Rev. A 83, 052324 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Steinke, S.K., Meystre, P.: Role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity. Phys. Rev. A 84, 023834 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Singh, S., Jing, H., Wright, E.M., Meystre, P.: Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror. Phys. Rev. A 86, 021801(R) (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Rogers, B., Paternostro, M., Palma, G.M., De Chiara, G.: Entanglement control in hybrid optomechanical systems. Phys. Rev. A 86, 042323 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Dalafi, A., Naderi, M.H., Soltanolkotabi, M., Barzanjeh, Sh.: Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Phys. Rev. A 87, 013417 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Di Giuseppe, G., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Komar, P., Bennett, S.D., Stannigel, K., Habraken, S.J.M., Rabl, P., Zoller, P., Lukin, M.D.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Mari, A., Eisert, J.: Cooling by heating: Very hot thermal light can significantly cool quantum systems. Phys. Rev. Lett 108, 120602 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, Q., Zhang, J.-Q., Ma, P.-C., Yao, C.-M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A 91, 063827 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Wu, Q., Zhang, J.-Q., Wu, J.-H., Feng, M., Zhang, Z.-M.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express 23, 18535 (2015)ADSGoogle Scholar
  34. 34.
    Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95, 033820 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, J.-Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 90, 043825 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Chen, R.-X., Shen, L.-T., Zheng, S.-B.: Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A 91, 022326 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Bai, C.-H., Wang, D.-Y., Wang, H.-F., Zhu, A.-D., Zhang, S.: Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Sci. Rep. 7, 2545 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Agarwal, G.S., Huang, S.: Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys. 16, 033023 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Wu, Y., Yang, X.: Quantum theory for microcavity enhancement of second harmonic generation. J. Phys. B 34, 2281 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Day, J.K., Chung, M.-H., Lee, Y.-H., Menon, V.M.: Microcavity enhanced second harmonic generation in 2D MoS 2. Opt. Mater. Express. 6, 2360 (2016)CrossRefGoogle Scholar
  42. 42.
    Rodriguez, A., Soljacic, M., Joannopoulos, J.D., Johnson, S.G.: (2) and (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt. Express 15, 7303 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Li, W., Lesanovsky, I.: Coherence in a cold-atom photon switch. Phys. Rev. A 92, 043828 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Baur, S., Tiarks, D., Rempe, G., Durr, S.: Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 073901, 112 (2014)Google Scholar
  45. 45.
    Rosenblum, S., Parkins, S., Dayan, B.: Photon routing in cavity QED: Beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Liu, Y.-L., Wu, R., Zhang, J., Ozdemir, S.K., Yang, L., Nori, F., Liu, Y.-X.: Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. R. A 95, 013843 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Yan, X.-B., Cui, C.-L., Gu, K.-H., Tian, X.-D., Fu, C.-B., Wu, J.-H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22, 4887 (2014)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Quantum Sciences and School of PhysicsNortheast Normal UniversityChangchunChina

Personalised recommendations