Skip to main content
Log in

Thermodynamics of a Higher Dimensional Noncommutative Inspired Anti-de Sitter-Einstein-Born-Infeld Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties such as the equation of state are explicitly calculated. In the (3 + 1)-dimensional case the Gibbs energy function of each model is used to discuss the presence of phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smailagic, A., Spallucci, E.: J. Phys. A36, L517 (2003). https://doi.org/10.1088/0305-4470/36/39/103

    ADS  Google Scholar 

  2. Smailagic, A., Spallucci, E.: J. Phys. A37, 1 (2004). https://doi.org/10.1088/0305-4470/37/28/008

    Google Scholar 

  3. Banerjee, R., Gangopadhyay, S., Modak, S.K.: Phys. Lett. B686, 181 (2010). https://doi.org/10.1016/j.physletb.2010.02.034

    Article  ADS  Google Scholar 

  4. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B632, 547 (2006). https://doi.org/10.1016/j.physletb.2005.11.004

    Article  ADS  Google Scholar 

  5. Nicolini, P.: Int. J. Mod. Phys. A24, 1229 (2009). https://doi.org/10.1142/S0217751X09043353

    Article  ADS  Google Scholar 

  6. Ansoldi, S., Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B645, 261 (2007). https://doi.org/10.1016/j.physletb.2006.12.020

    Article  ADS  Google Scholar 

  7. Spallucci, E., Smailagic, A., Nicolini, P.: Phys. Lett. B670, 449 (2009). https://doi.org/10.1016/j.physletb.2008.11.030

    Article  ADS  Google Scholar 

  8. Tejeiro, J.M., Larranaga, A.: Pramana 78, 155 (2012). https://doi.org/10.1007/s12043-011-0206-0

    Article  ADS  Google Scholar 

  9. Liang, J., Liu, B.: Europhys. Lett. 100, 30001 (2012). https://doi.org/10.1209/0295-5075/100/30001

    Article  ADS  Google Scholar 

  10. Rahaman, F., Kuhfittig, P.K.F., Bhui, B.C., Rahaman, M., Ray, S., Mondal, U.F.: Phys. Rev. D87(8), 084014 (2013). https://doi.org/10.1103/PhysRevD.87.084014

    ADS  Google Scholar 

  11. González, A., Linares, R., Maceda, M., Sánchez-Santos, O.: Phys. Rev. D90(12), 124085 (2014). https://doi.org/10.1103/PhysRevD.90.124085

    ADS  Google Scholar 

  12. Ansoldi, S.: In: Conference on Black Holes and Naked Singularities Milan, Italy, May 10–12, 2007 (2008)

  13. Rizzo, T.G.: JHEP 06, 079 (2005). https://doi.org/10.1088/1126-6708/2005/06/079

    Article  ADS  Google Scholar 

  14. Born, M.: Proc. Roy. Soc. Lond. A143, 410 (1934)

    Article  ADS  Google Scholar 

  15. Born, M., Infeld, L.: Proc. Roy. Soc. Lond. A144, 425 (1934)

    Article  ADS  Google Scholar 

  16. Fradkin, E., Tseytlin, A.A.: Phys. Lett. B163, 123 (1985). https://doi.org/10.1016/0370-2693(85)90205-9

    Article  ADS  Google Scholar 

  17. Leigh, R.G.: Mod. Phys. Lett. A4, 2767 (1989). https://doi.org/10.1142/S0217732389003099

    Article  ADS  Google Scholar 

  18. Wiltshire, D.L.: Phys. Rev. D38, 2445 (1988). https://doi.org/10.1103/PhysRevD.38.2445

    ADS  Google Scholar 

  19. Rasheed, D.A.: DAMTP-r-97-08 (1997)

  20. Tseytlin, A.A.: In: The Many Faces of the Superworld (World Scientific, 2000), p. 417

  21. Tamaki, T., Torii, T.: Phys. Rev. D62, 061501 (2000). https://doi.org/10.1103/PhysRevD.62.061501

    ADS  Google Scholar 

  22. Gibbons, G.W.: Rev. Mex. Fis. 49S1, 19 (2003). [,324(2001)]

    Google Scholar 

  23. Breton, N.: Phys. Rev. D67, 124004 (2003). https://doi.org/10.1103/PhysRevD.67.124004

    ADS  Google Scholar 

  24. Aiello, M., Ferraro, R., Giribet, G.: Phys. Rev. D70, 104014 (2004). https://doi.org/10.1103/PhysRevD.70.104014

    ADS  Google Scholar 

  25. Cataldo, M., Garcia, A.: Phys. Lett. B456, 28 (1999). https://doi.org/10.1016/S0370-2693(99)00441-4

    Article  ADS  Google Scholar 

  26. Fernando, S., Krug, D.: Gen. Relativ. Gravit. 35, 129 (2003). https://doi.org/10.1023/A:1021315214180

    Article  ADS  Google Scholar 

  27. Cai, R.G., Pang, D.W., Wang, A.: Phys. Rev. D70, 124034 (2004). https://doi.org/10.1103/PhysRevD.70.124034

    ADS  Google Scholar 

  28. Dey, T.K.: Phys. Lett. B595, 484 (2004). https://doi.org/10.1016/j.physletb.2004.06.047

    ADS  Google Scholar 

  29. García, A., Salazar, H., Plebański, J.F.: Il Nuovo Cimento B (1971-1996) 84(1), 65 (2007). https://doi.org/10.1007/BF02721649

  30. Demianski, M.: Found. Phys. 16, 187 (1986). https://doi.org/10.1007/BF01889380

    Article  ADS  MathSciNet  Google Scholar 

  31. Dvali, G., Gomez, C., Mukhanov, S.: JHEP 02, 012 (2011). https://doi.org/10.1007/JHEP02(2011)012

    ADS  Google Scholar 

  32. Spallucci, E., Smailagic, A. In: Barton, A. (ed.): Advances in Black Holes Research. Nova Science Publishers, NY, USA (2014)

  33. Gunasekaran, S., Mann, R.B., Kubiznak, D.: JHEP 11, 110 (2012). https://doi.org/10.1007/JHEP11(2012)110

    Article  ADS  Google Scholar 

  34. Akmansoy, P.N., Medeiros, L.G.: arXiv:1712.05486 [hep-th] (2017)

  35. Brown, J.D., Creighton, J., Mann, R.B.: Phys. Rev. D50, 6394 (1994). https://doi.org/10.1103/PhysRevD.50.6394

    ADS  Google Scholar 

  36. Nicolini, P., Torrieri, G.: JHEP 08, 097 (2011). https://doi.org/10.1007/JHEP08(2011)097

    Article  ADS  Google Scholar 

  37. Banerjee, R., Roychowdhury, D.: Phys. Rev. D85, 044040 (2012). https://doi.org/10.1103/PhysRevD.85.044040

    ADS  Google Scholar 

  38. Banerjee, R., Roychowdhury, D.: Phys. Rev. D85, 104043 (2012). https://doi.org/10.1103/PhysRevD.85.104043

    ADS  Google Scholar 

  39. Cirilo Lombardo, D.J.: Gen. Rel. Grav. 37, 847 (2005). https://doi.org/10.1007/s10714-005-0071-6

    Article  Google Scholar 

  40. In: Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

Download references

Acknowledgements

The authors would like to thank the referee for her/his valuable comments and suggestions. This research was supported by CONACyT-DFG Collaboration Grant 147492 “Noncommutative Models in Physics”. The work of A. G. was supported by the Ph.D. scholarship program of the Universidad Autónoma Metropolitana. R. L. acknowledges partial support from CONACyT Grant 237351 “Implicaciones físicas de la estructura del espacio-tiempo”. O. S.-S. was supported by a Posdoctoral Fellowship Grant PROMEP/103.5/13/9043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maceda.

Appendices

Appendix A: Calculation of the Temperature

Here we derive a expression for the temperature of the modified black hole in (3+1)-dimensions used in the main text; its generalisation to higher dimensions is straightforward. The metric is assumed to be

$$ ds^2 = - N^2(r) dt^2 + f^{-2}(r) + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), $$
(81)

with N(r) = f(r). Then the temperature at r = R is [35]

$$\begin{array}{@{}rcl@{}} T(R) &=& \left( \frac {\partial E}{\partial S} \right) \\ &=& \frac {\partial}{\partial(\pi {r_{H}^{2}})} {\int}_{S^{2}} d^{2} x \sqrt{\sigma} \left[ \frac 1{8\pi} \left( - \frac {2f(R)}R \right) - \epsilon_{0} (R) \right] \\ &=& -\frac {4\pi R^{2}}{8\pi R} \frac 1{f(R)} \frac {\partial f^{2}(R)}{\partial(\pi {r_{H}^{2}})} = -\frac R{4\pi} \frac 1{N(R)} \frac {\partial N^{2}(R)}{\partial r_{H}}. \end{array} $$
(82)

Let us assume that

$$ N^2(r) = 1 - M W(r) + V(r, Q, {\Lambda}), $$
(83)

where W and V are arbitrary functions of their arguments. Then the condition N2(r H ) = 0 implies

$$ M = \frac 1{W(r_H)} [1 + V(r_H, Q, {\Lambda})]. $$
(84)

In consequence

$$ T(R) = \frac 1{N(R)} \frac {R \,W(R)}{4\pi r_H} \frac {\partial}{\partial r_H} \frac 1{W(r_H)} [1 + V(r_H, Q, {\Lambda})]. $$
(85)

On the other hand, we have

$$\begin{array}{@{}rcl@{}} \frac {\partial N^{2}(r)}{\partial r} &=& -M W_{,r} + V_{,r} \\ &=& - \frac 1{W(r_{H})} [1 + V(r_{H}, Q, {\Lambda})] W_{,r} + V_{,r}, \end{array} $$
(86)

and evaluation at r = r H gives

$$ \frac {\partial N^2(r)}{\partial r} |_{r_H} = W(r_H) \frac {\partial}{\partial r_H} \frac 1{W(r_H)} [1 + V(r_H, Q, {\Lambda})]. $$
(87)

It follows that

$$\begin{array}{@{}rcl@{}} T(R) &=& \frac 1{N(R)} \frac {R \,W(R)}{r_{H} W(r_{H})} \frac 1{4\pi} \frac {\partial N^{2}(r)}{\partial r} |_{r_{H}} \\ &=& \frac 1{N(R)} \frac {R \,W(R)}{r_{H} W(r_{H})} \frac {\kappa_{H}}{2\pi}. \end{array} $$
(88)

This expression was used to obtain (55) in the main text.

Appendix B: Integrals for Small Noncommutative Corrections

The quantitiy I1 in the main text is defined by the integral

$$ I_1 := {\int}_r^{\infty} ds \frac {H(s) s^3 \rho_Q(s)}{\sqrt{s^4 + H^2(s)/b^2}}. $$
(89)

For I1 it suffices to set H = Q due to the presence of the exponentially decaying ρ Q ; then

$$ I_1 = \frac {Q^2}{(4\pi\theta)^{3/2}} {\int}_r^{\infty} ds \frac {s^3 e^{-s^2/4\theta}}{\sqrt{s^4 + Q^2/b^2}}. $$
(90)

Let us perform the change of variable u = s2/4𝜃, then

$$\begin{array}{@{}rcl@{}} I_{1} &=& \frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} {\int}_{r^{2}/4\theta}^{\infty} du \frac {u e^{-u}}{\sqrt{u^{2} + Q^{2}/(4\theta b)^{2}}} \\ &=&\frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} {\int}_{r^{2}/4\theta}^{\infty} du e^{-u} \left[ 1 + \left( \frac Q{4\theta b u} \right)^{2} \right]^{-1/2} \\ &=&\frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} {\int}_{r^{2}/4\theta}^{\infty} du e^{-u} \sum\limits_{k = 0}^{\infty} \binom{-1/2}{k} \left( \frac Q{4\theta b u} \right)^{2k} \\ &=&\frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} \sum\limits_{k = 0}^{\infty} \binom{-1/2}{k} \left( \frac Q{4\theta b} \right)^{2k} {\int}_{r^{2}/4\theta}^{\infty} du u^{-2k} e^{-u} \\ &=&\frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} \sum\limits_{k = 0}^{\infty} \binom{-1/2}{k} \left( \frac Q{4\theta b} \right)^{2k} {\Gamma}\left[ 1-2k, \frac {r^{2}}{4\theta} \right]. \end{array} $$
(91)

Using now the asymptotic behaviour for the upper incomplete gamma function [40]

$$ {\Gamma}(n, x) \sim x^{n-1} e^{-x}, \qquad x \to \infty, $$
(92)

we have

$$\begin{array}{@{}rcl@{}} I_{1} &=&\frac12 \frac {Q^{2}}{(4\pi\theta)^{3/2}} \sum\limits_{k = 0}^{\infty} \binom{-1/2}{k} \left( \frac Q{4\theta b} \right)^{2k} \left( \frac {r^{2}}{4\theta} \right)^{-2k} e^{-r^{2}/4\theta} \\ &=& \frac12 \frac {Q^{2} e^{-r^{2}/4\theta}}{(4\pi\theta)^{3/2}} \sum\limits_{k = 0}^{\infty} \binom{-1/2}{k} \left( \frac Q{b r^{2}} \right)^{2k} \\ &=& \frac12 \frac {Q^{2} e^{-r^{2}/4\theta}}{(4\pi\theta)^{3/2}} \left[ 1 + \left( \frac Q{b r^{2}} \right)^{2} \right]^{-1/2} \\ &=& \frac {Q^{2}}2 \frac {e^{-r^{2}/4\theta}}{(4\pi\theta)^{3/2}} \frac {r^{2}}{\sqrt{r^{4} + Q^{2}/b^{2}}}. \end{array} $$
(93)

We now evaluate

$$ I_2 := {\int}_r^{\infty} ds \frac {H^2(s)}{\sqrt{s^4 + H^2(s)/b^2}}, $$
(94)

for small values of 𝜃. In this case we use

$$ H(r) = Q \left[ 1 - \frac r{\sqrt{\pi\theta}} e^{-r^2/4\theta} \right], $$
(95)

valid for small values of 𝜃. We have then

$$\begin{array}{@{}rcl@{}} I_{2} &=& Q^{2} \left\{ {\int}_{r}^{\infty} ds \frac 1{\sqrt{s^{4} + Q^{2}/b^{2}}} - \frac 4{(4\pi\theta)^{1/2}} {\int}_{r}^{\infty} ds \frac {s e^{-s^{2}/4\theta}}{\sqrt{s^{4} + Q^{2}/b^{2}}} \right. \\ &&\quad\quad\left. + \frac {Q^{2}}{b^{2}} \frac 2{(4\pi\theta)^{1/2}} {\int}_{r}^{\infty} ds \frac {s e^{-s^{2}/4\theta}}{(s^{4} + Q^{2}/b^{2})^{3/2}} \right\}. \end{array} $$
(96)

In the above expression, the first integral is nothing but the standard BI electromagnetic contribution to the metric. The second and third integral correspond to exponentially decaying noncommutative corrections and can be evaluated in the same fashion as I1 with the final result

$$\begin{array}{@{}rcl@{}} I_{2} \!&=&\! Q^{2} \left\{ \frac 1r \,{~}_{2} F_{1} \left( \frac 12, \frac 14; \frac 54; - \frac {Q^{2}}{b^{2} r^{4}} \right) \,-\, \frac 4{(4\pi\theta)^{1/2}} \!\times\! 2\theta \frac {e^{-r^{2}/4\theta}}{\sqrt{r^{4} + Q^{2}/b^{2}}} \right. \\ &&\quad\quad \left. \!+ \frac {Q^{2}}{b^{2}} \frac 2{(4\pi\theta)^{1/2}} \!\times\! 2\theta \frac {e^{-r^{2}/4\theta}}{(r^{4} + Q^{2}/b^{2})^{3/2}} \right\} \\ \!&=&\! Q^{2} \left\{ \frac 1r \,{~}_{2} F_{1}\left( \frac 12, \frac 14; \frac 54; - \frac {Q^{2}}{b^{2} r^{4}} \right) \,-\, \sqrt{\frac \theta\pi} \frac {4 e^{-r^{2}/4\theta}}{\sqrt{r^{4} + Q^{2}/b^{2}}} \,+\, \frac {Q^{2}}{b^{2}} \sqrt{\frac \theta\pi} \frac {2 e^{-r^{2}/4\theta}}{(r^{4} + Q^{2}/b^{2})^{3/2}} \right\}. \\\end{array} $$
(97)

Appendix C: Limit r → 0

We consider the case of (d + 1)-dimensions. Using the fact that [40]

$$ \gamma(s, z) = \sum\limits_{k = 0}^{\infty} \frac {z^s}{k!(s + k)}, $$
(98)

the function H(r) is approximated for small values of r as

$$ H(r) = \frac {2Q}{\pi^{d/2-1}} \left[ \frac 2d \left( \frac {r^2}{4\theta} \right)^{d/2} + {\dots} \right] \sim \frac {Q}{2^{d-2}d} \frac {r^d}{\pi^{d/2-1}\theta^{d/2}}, $$
(99)

where … denotes terms with higher powers of r. Direct substitution of this expression into the equation of motion given by (36) leads to

$$\begin{array}{@{}rcl@{}} (r^{d-2} e^{-2\nu})_{,r} \!&=&\! (d - 2) r^{d-3} - {\Lambda} r^{d-1} + 2b^{2} \left( r^{d-1} - \sqrt{\frac {Q^{2} r^{2d}}{2^{2d-4} d^{2} \pi^{d-2} \theta^{d} b^{2}} + r^{2(d-1)}} \right)\\ \end{array} $$
(100)
$$\begin{array}{@{}rcl@{}} \!&=&\! (d - 2) r^{d-3} - {\Lambda} r^{d-1} + 2b^{2} r^{d-1} \left( 1 - \sqrt{1 + \frac {Q^{2} r^{2}}{2^{2d-4} d^{2} \pi^{d-2} \theta^{d} b^{2}}} \right) \end{array} $$
(101)
$$\begin{array}{@{}rcl@{}} \!&=&\! (d - 2) r^{d-3} - {\Lambda} r^{d-1} - \frac {Q^{2} r^{d + 1}}{2^{2d-4} d^{2} \pi^{d-2} \theta^{d}} + \dots, \end{array} $$
(102)

where … denotes terms with higher powers of r. Integration of this expression gives

$$ r^{d-2} e^{-2\nu} = b_0 + r^{d-2} - \frac {\Lambda}{d} r^d - \frac {Q^2 r^{d + 2}}{2^{2d-4} (d + 2) d^2 \pi^{d-2} \theta^d} + \dots, $$
(103)

where b0 is a constant that can be set equal to − 2M. Therefore

$$ e^{-2\nu} = 1- \frac{2M}r - \frac{\Lambda}{d} r^2 - \frac {Q^2}{2^{2d-4} (d + 2) d^2 \pi^{d-2} \theta^d} r^4 + \dots $$
(104)

We see that the singularity due to the electromagnetic field has been smoothed out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, A., Linares, R., Maceda, M. et al. Thermodynamics of a Higher Dimensional Noncommutative Inspired Anti-de Sitter-Einstein-Born-Infeld Black Hole. Int J Theor Phys 57, 2041–2063 (2018). https://doi.org/10.1007/s10773-018-3730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3730-6

Keywords

Navigation