Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2041–2063 | Cite as

Thermodynamics of a Higher Dimensional Noncommutative Inspired Anti-de Sitter-Einstein-Born-Infeld Black Hole

  • Angélica González
  • Román Linares
  • Marco Maceda
  • Oscar Sánchez-Santos
Article
  • 44 Downloads

Abstract

We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties such as the equation of state are explicitly calculated. In the (3 + 1)-dimensional case the Gibbs energy function of each model is used to discuss the presence of phase transitions.

Keywords

Anti-de Sitter-Einstein-Born-Infeld black hole Noncommutative geometry Thermodynamics of black holes 

Notes

Acknowledgements

The authors would like to thank the referee for her/his valuable comments and suggestions. This research was supported by CONACyT-DFG Collaboration Grant 147492 “Noncommutative Models in Physics”. The work of A. G. was supported by the Ph.D. scholarship program of the Universidad Autónoma Metropolitana. R. L. acknowledges partial support from CONACyT Grant 237351 “Implicaciones físicas de la estructura del espacio-tiempo”. O. S.-S. was supported by a Posdoctoral Fellowship Grant PROMEP/103.5/13/9043.

References

  1. 1.
    Smailagic, A., Spallucci, E.: J. Phys. A36, L517 (2003).  https://doi.org/10.1088/0305-4470/36/39/103 ADSGoogle Scholar
  2. 2.
    Smailagic, A., Spallucci, E.: J. Phys. A37, 1 (2004).  https://doi.org/10.1088/0305-4470/37/28/008 Google Scholar
  3. 3.
    Banerjee, R., Gangopadhyay, S., Modak, S.K.: Phys. Lett. B686, 181 (2010).  https://doi.org/10.1016/j.physletb.2010.02.034 ADSCrossRefGoogle Scholar
  4. 4.
    Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B632, 547 (2006).  https://doi.org/10.1016/j.physletb.2005.11.004 ADSCrossRefGoogle Scholar
  5. 5.
    Nicolini, P.: Int. J. Mod. Phys. A24, 1229 (2009).  https://doi.org/10.1142/S0217751X09043353 ADSCrossRefGoogle Scholar
  6. 6.
    Ansoldi, S., Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B645, 261 (2007).  https://doi.org/10.1016/j.physletb.2006.12.020 ADSCrossRefGoogle Scholar
  7. 7.
    Spallucci, E., Smailagic, A., Nicolini, P.: Phys. Lett. B670, 449 (2009).  https://doi.org/10.1016/j.physletb.2008.11.030 ADSCrossRefGoogle Scholar
  8. 8.
    Tejeiro, J.M., Larranaga, A.: Pramana 78, 155 (2012).  https://doi.org/10.1007/s12043-011-0206-0 ADSCrossRefGoogle Scholar
  9. 9.
    Liang, J., Liu, B.: Europhys. Lett. 100, 30001 (2012).  https://doi.org/10.1209/0295-5075/100/30001 ADSCrossRefGoogle Scholar
  10. 10.
    Rahaman, F., Kuhfittig, P.K.F., Bhui, B.C., Rahaman, M., Ray, S., Mondal, U.F.: Phys. Rev. D87(8), 084014 (2013).  https://doi.org/10.1103/PhysRevD.87.084014 ADSGoogle Scholar
  11. 11.
    González, A., Linares, R., Maceda, M., Sánchez-Santos, O.: Phys. Rev. D90(12), 124085 (2014).  https://doi.org/10.1103/PhysRevD.90.124085 ADSGoogle Scholar
  12. 12.
    Ansoldi, S.: In: Conference on Black Holes and Naked Singularities Milan, Italy, May 10–12, 2007 (2008)Google Scholar
  13. 13.
  14. 14.
    Born, M.: Proc. Roy. Soc. Lond. A143, 410 (1934)ADSCrossRefGoogle Scholar
  15. 15.
    Born, M., Infeld, L.: Proc. Roy. Soc. Lond. A144, 425 (1934)ADSCrossRefGoogle Scholar
  16. 16.
    Fradkin, E., Tseytlin, A.A.: Phys. Lett. B163, 123 (1985).  https://doi.org/10.1016/0370-2693(85)90205-9 ADSCrossRefGoogle Scholar
  17. 17.
    Leigh, R.G.: Mod. Phys. Lett. A4, 2767 (1989).  https://doi.org/10.1142/S0217732389003099 ADSCrossRefGoogle Scholar
  18. 18.
    Wiltshire, D.L.: Phys. Rev. D38, 2445 (1988).  https://doi.org/10.1103/PhysRevD.38.2445 ADSGoogle Scholar
  19. 19.
    Rasheed, D.A.: DAMTP-r-97-08 (1997)Google Scholar
  20. 20.
    Tseytlin, A.A.: In: The Many Faces of the Superworld (World Scientific, 2000), p. 417Google Scholar
  21. 21.
    Tamaki, T., Torii, T.: Phys. Rev. D62, 061501 (2000).  https://doi.org/10.1103/PhysRevD.62.061501 ADSGoogle Scholar
  22. 22.
    Gibbons, G.W.: Rev. Mex. Fis. 49S1, 19 (2003). [,324(2001)]Google Scholar
  23. 23.
    Breton, N.: Phys. Rev. D67, 124004 (2003).  https://doi.org/10.1103/PhysRevD.67.124004 ADSGoogle Scholar
  24. 24.
    Aiello, M., Ferraro, R., Giribet, G.: Phys. Rev. D70, 104014 (2004).  https://doi.org/10.1103/PhysRevD.70.104014 ADSGoogle Scholar
  25. 25.
    Cataldo, M., Garcia, A.: Phys. Lett. B456, 28 (1999).  https://doi.org/10.1016/S0370-2693(99)00441-4 ADSCrossRefGoogle Scholar
  26. 26.
    Fernando, S., Krug, D.: Gen. Relativ. Gravit. 35, 129 (2003).  https://doi.org/10.1023/A:1021315214180 ADSCrossRefGoogle Scholar
  27. 27.
    Cai, R.G., Pang, D.W., Wang, A.: Phys. Rev. D70, 124034 (2004).  https://doi.org/10.1103/PhysRevD.70.124034 ADSGoogle Scholar
  28. 28.
    Dey, T.K.: Phys. Lett. B595, 484 (2004).  https://doi.org/10.1016/j.physletb.2004.06.047 ADSGoogle Scholar
  29. 29.
    García, A., Salazar, H., Plebański, J.F.: Il Nuovo Cimento B (1971-1996) 84(1), 65 (2007).  https://doi.org/10.1007/BF02721649
  30. 30.
    Demianski, M.: Found. Phys. 16, 187 (1986).  https://doi.org/10.1007/BF01889380 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Dvali, G., Gomez, C., Mukhanov, S.: JHEP 02, 012 (2011).  https://doi.org/10.1007/JHEP02(2011)012 ADSGoogle Scholar
  32. 32.
    Spallucci, E., Smailagic, A. In: Barton, A. (ed.): Advances in Black Holes Research. Nova Science Publishers, NY, USA (2014)Google Scholar
  33. 33.
    Gunasekaran, S., Mann, R.B., Kubiznak, D.: JHEP 11, 110 (2012).  https://doi.org/10.1007/JHEP11(2012)110 ADSCrossRefGoogle Scholar
  34. 34.
    Akmansoy, P.N., Medeiros, L.G.: arXiv:1712.05486 [hep-th] (2017)
  35. 35.
    Brown, J.D., Creighton, J., Mann, R.B.: Phys. Rev. D50, 6394 (1994).  https://doi.org/10.1103/PhysRevD.50.6394 ADSGoogle Scholar
  36. 36.
    Nicolini, P., Torrieri, G.: JHEP 08, 097 (2011).  https://doi.org/10.1007/JHEP08(2011)097 ADSCrossRefGoogle Scholar
  37. 37.
    Banerjee, R., Roychowdhury, D.: Phys. Rev. D85, 044040 (2012).  https://doi.org/10.1103/PhysRevD.85.044040 ADSGoogle Scholar
  38. 38.
    Banerjee, R., Roychowdhury, D.: Phys. Rev. D85, 104043 (2012).  https://doi.org/10.1103/PhysRevD.85.104043 ADSGoogle Scholar
  39. 39.
    Cirilo Lombardo, D.J.: Gen. Rel. Grav. 37, 847 (2005).  https://doi.org/10.1007/s10714-005-0071-6 CrossRefGoogle Scholar
  40. 40.
    In: Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana - IztapalapaCiudad de MéxicoMéxico

Personalised recommendations